sábado, 18 de abril de 2015

LAMPROITE-HOSTED DIAMONDS

LAMPROITE-HOSTED DIAMONDS
by Jennifer Pell
Consulting Geologist
 
Ref: diamantes, lamproitos, xenocristais, manto, olivina lamproito, piroclásticas, brechas
 
Pell, J. (1998): Lamproite-hosted Diamonds, in Geological Fieldwork 1997, British Columbia Ministry of Employment and Investment, Paper 1998-1, pages 24M-1 to 24M-4.
IDENTIFICATION
SYNONYMS: None.
COMMODITY: Diamonds.
EXAMPLES (British Columbia (MINFILE #) - Canada/International): No B.C. examples; Argyle, Ellendale (Western Australia), Prairie Creek (Crater of Diamonds, Arkansas, USA), Bobi (Côte d'Ivoire), Kapamba (Zambia), Majhgawan (India).
GEOLOGICAL CHARACTERISTICS
CAPSULE DESCRIPTION: Diamonds occur as sparse xenocrysts and in mantle xenoliths within olivine lamproite pyroclastic rocks and dikes. Many deposits are found within funnel-shaped volcanic vents or craters. Lamproites are ultrapotassic mafic rocks characterized by the presence of olivine, leucite, richterite, diopside or sanidine.
TECTONIC SETTING: Most olivine lamproites are post-tectonic and occur close to the margins of Archean cratons, either within the craton or in adjacent accreted Proterozoic mobile belts.
DEPOSITIONAL ENVIRONMENT / GEOLOGICAL SETTING: Olivine lamproites are derived from metasomatized lithospheric mantle. They are generally emplaced in high-level, shallow "maar-type" craters crosscutting crustal rocks of all types.
AGE OF MINERALIZATION: Any age except Archean. Diamondiferous lamproites range from Proterozoic to Miocene in age.
HOST/ASSOCIATED ROCK TYPES: Olivine lamproite pyroclastic rocks and dikes commonly host mineralization while lava flows sampled to date are barren. Diamonds are rarely found in the magmatic equivalents. Lamproites are peralkaline and typically ultrapotassic (6 to 8% K2O). They are characterized by the presence of one or more of the following primary phenocryst and/or groundmass constituents: forsteritic olivine; Ti-rich, Al-poor phlogopite and tetraferriphlogopite; Fe-rich leucite; Ti, K-richterite; diopside; and Fe-rich sanidine. Minor and accessory phases include priderite, apatite, wadeite, perovskite, spinel, ilmenite, armalcolite, shcherbakovite and jeppeite. Glass and mantle derived xenocrysts of olivine, pyrope garnet and chromite may also be present.
DEPOSIT FORM: Most lamproites occur in craters which are irregular, asymmetric, and generally rather shallow (often the shape of a champagne glass), often less than 300 metres in depth. Crater diameters range from a few hundred metres to 1500 metres. Diamond concentrations vary between lamproite phases, and as such, ore zones will reflect the shape of the unit (can be pipes or funnel-shaped). The volcaniclastic rocks in many, but not all, lamproite craters are intruded by a magmatic phase that forms lava lakes or domes.
TEXTURE/STRUCTURE: Diamonds occur as discrete grains of xenocrystic origin that are sparsely and randomly distributed in the matrix of lamproites and some mantle xenoliths.
ORE MINERALOGY: Diamond.
GANGUE MINERALOGY (Principal and subordinate): Olivine, phlogopite, richterite, diopside, sanidine; priderite, wadeite, ilmenite, chromite, perovskite, spinel, apatite, pyrope garnet.
ALTERATION MINERALOGY: Alteration to talc carbonate sulphide or serpentine -septechlorite + magnetite has been described from Argyle (Jacques et al., 1986). According Scott Smith (1996), alteration to analcime, barite, quartz, zeolite, carbonate and other minerals may also occur. Diamonds can undergo graphitization or resorption.
WEATHERING: Clays, predominantly smectite, are the predominant weathering product of lamproites.
ORE CONTROLS: Lamproites are small-volume magmas which are confined to continental regions. There are relatively few lamproites known world wide, less than 20 geological provinces, of which only seven are diamondiferous. Only olivine lamproites are diamondiferous, other varieties, such as leucite lamproites presumably did not originate deep enough in the mantle to contain diamonds. Even within the olivine lamproites, few contain diamonds in economic concentrations. Controls on the differences in diamond content between intrusions are not completely understood. They may be due to: different depths of origin of the magmas (above or below the diamond stability field); differences in the diamond content of the mantle sampled by the lamproite magma; differences in degrees of resorption of diamonds during transport; or some combination of these factors.
GENETIC MODEL: Lamproites form from a small amount of partial melting in metasomatized lithospheric mantle at depths generally in excess of 150 km (i.e., within or beneath the diamond stability field). The magma ascends rapidly to the surface, entraining fragments of the mantle and crust en route. Diamonds do not crystallize from the lamproite magma. They are derived from harzburgitic peridotites and eclogites within regions of the sub-cratonic lithospheric mantle where the pressure, temperature and oxygen fugacity allow them to form in situ. If a lamproite magma passes through diamondiferous portions of the mantle, it may sample them and bring diamonds to the surface provided they are not resorbed during ascent.
ASSOCIATED DEPOSIT TYPES: Diamonds can be concentrated by weathering to produce residual concentrations or by erosion and transport to create placer deposits (C01, C02, C03). Kimberlite-hosted diamond deposits (N02) form in a similar manner, but the magmas may be of different origin.
EXPLORATION GUIDES
GEOCHEMICAL SIGNATURE: Lamproites can have associated Ni, Co, Ba and Nb anomalies in overlying residual soils. However, these may be restricted in extent since lamproites weather readily and commonly occur in depressions and dispersion is limited. Caution must be exercised as other alkaline rocks can give similar geochemical signatures.
GEOPHYSICAL SIGNATURE: Geophysical techniques are used to locate lamproites, but give no indication as to their diamond content. Ground and airborne magnetometer surveys are commonly used; weathered or crater-facies lamproites commonly form negative magnetic anomalies or dipole anomalies. Some lamproites, however, have no magnetic contrast with surrounding rocks. Various electrical methods (EM, VLF, resistivity) in airborne or ground surveys are excellent tools for detecting lamproites, given the correct weathering environment and contrasts with country rocks. In general, clays, particularly smectite, produced during the weathering of lamproites are conductive; and hence, produce strong negative resistivity anomalies.
OTHER EXPLORATION GUIDES: Heavy indicator minerals are used in the search for diamondiferous lamproites, although they are usually not as abundant as with kimberlites. Commonly, chromite is the most useful heavy indicator because it is the most common species and has distinctive chemistry. To a lesser extent, diamond, pyrope and eclogitic garnet, chrome spinel, Ti-rich phlogopite, K-Ti-richterite, low-Al diopside, forsterite and perovskite can be used as lamproite indicator minerals. Priderite, wadeite and shcherbakovite are also highly diagnostic of lamproites, although very rare.
ECONOMIC FACTORS
TYPICAL GRADE AND TONNAGE: When assessing diamond deposits, grade, tonnage and the average value ($/carat) of the diamonds must be considered. Diamonds, unlike commodities such as gold, do not have a set value. They can be worth from a few to thousands of $/carat depending on their quality (evaluated on the size, colour and clarity of the stone). Argyle is currently the only major lamproite-hosted diamond mine. It contains at least 75 million tonnes, grading between 6 and 7 carats of diamonds per tonne (1.2 to 1.4 grams/tonne). The Prairie Creek mine produced approximately 100 000 carats and graded 0.13 c/t. Typical reported grades for diamond-bearing lamproites of <0.01 to .3 carats per tonne are not economic (Kjarsgaard, 1995). The average value of the diamonds at Argyle is approximately $US 7/carat; therefore, the average value of a tonne of ore is approximately $US 45.50 and the value of total reserves in the ground is in excess of $US 3.4 billion.
END USES: Gemstones; industrial uses such as abrasives.
IMPORTANCE: Olivine lamproites have only been recognized as diamond host rocks for approximately the last 20 years as they were previously classified as kimberlites based solely on the presence of diamonds. Most diamonds are still produced from kimberlites; however, the Argyle pipe produces more carats per annum (approximately 38,000 in 1995), by far, than any other single primary diamond source. Approximately 5% of the diamonds are good quality gemstones.

Gahcho Kué a maior e mais rica mina de diamantes ainda não desenvolvida do mundo

Gahcho Kué a maior e mais rica mina de diamantes ainda não desenvolvida do mundo 



A junior canadense  Mountain Province está em JV com a De Beers (51%) para desenvolver o que é considerado o maior e mais rico jazimento de diamantes ainda não lavrado do mundo: o Projeto Gahcho Kué.

O projeto já teve um estudo de viabilidade econômica  que mostra um NPV 10% de 1 bilhão de dólares canadenses para uma mina de 12 anos. Segundo esse estudo a mina produzirá 53,4 milhões de quilates ao longo de sua vida útil: uma produção média de 4,45 milhões de quilates ao ano. Os estudos de grande volume indicam que o diamante de Gahcho Kué tem um valor médio de US$150/ quilate.

O que faz Gahcho Kué se destacar das demais jazidas é o seu altíssimo teor médio de 1,57 quilates por tonelada. A mina será uma operação a céu aberto sobre um dos quatro pipes que compõem o Kennady Lake kimberlite cluster (imagem ao lado). Os pipes são pequenos e, pelo menos um é um hipoabissal de pequeno volume que será lavrado somente no final da operação. Os outros dois pipes não apresentaram teores econômicos. A operação deverá dividir e drenar a água da parte sul do Lago Kennady que cobre o kimberlito mineralizado.

As empresas esperam entrar em produção em 2016.

KIMBERLITE-HOSTED DIAMONDS

KIMBERLITE-HOSTED DIAMONDS
by Jennifer Pell
Consulting Geologist
 
Ref: kimberlito, diamante, brecha, tufos, xenocristais, indicadores, olivina, ilmenita, piropo, espinélio, eclogito, granada, manto
 
Pell, J. (1998): Kimberlite-hosted Diamonds, in Geological Fieldwork 1997, British Columbia Ministry of Employment and Investment, Paper 1998-1, pages 24L-1 to 24L-4.
IDENTIFICATION
SYNONYMS: Diamond-bearing kimberlite pipes, diamond pipes, group 1 kimberlites.
COMMODITIES (BYPRODUCTS): Diamonds (some gemstones produced in Russia from pyrope garnets and olivine).
EXAMPLES (British Columbia - Canada/International): No B.C. deposits, see comments below for prospects; Koala, Panda, Sable, Fox and Misery (Northwest Territories, Canada), Mir, International, Udachnaya, Aikhal and Yubilenaya (Sakha, Russia), Kimberly, Premier and Venetia (South Africa), Orapa and Jwaneng (Botswana), River Ranch (Zimbabwe).
GEOLOGICAL CHARACTERISTICS
CAPSULE DESCRIPTION: Diamonds in kimberlites occur as sparse xenocrysts and within diamondiferous xenoliths hosted by intrusives emplaced as subvertical pipes or resedimented volcaniclastic and pyroclastic rocks deposited in craters. Kimberlites are volatile-rich, potassic ultrabasic rocks with macrocrysts (and sometimes megacrysts and xenoliths) set in a fine grained matrix. Economic concentrations of diamonds occur in approximately 1% of the kimberlites throughout the world.
TECTONIC SETTING: Predominantly regions underlain by stable Archean cratons.
DEPOSITIONAL ENVIRONMENT / GEOLOGICAL SETTING: The kimberlites rise quickly from the mantle and are emplaced as multi-stage, high-level diatremes, tuff-cones and rings, hypabyssal dikes and sills.
AGE OF MINERALIZATION: Any age except Archean for host intrusions. Economic deposits occur in kimberlites from Proterozoic to Tertiary in age. The diamonds vary from early Archean to as young as 990 Ma.
HOST/ASSOCIATED ROCK TYPES: The kimberlite host rocks are small hypabyssal intrusions which grade upwards into diatreme breccias near surface and pyroclastic rocks in the crater facies at surface. Kimberlites are volatile-rich, potassic ultrabasic rocks that commonly exhibit a distinctive inequigranular texture resulting from the presence of macrocrysts (and sometimes megacrysts and xenoliths) set in a fine grained matrix. The megacryst and macrocryst assemblage in kimberlites includes anhedral crystals of olivine, magnesian ilmenite, pyrope garnet, phlogopite, Ti-poor chromite, diopside and enstatite. Some of these phases may be xenocrystic in origin. Matrix minerals include microphenocrysts of olivine and one or more of: monticellite, perovskite, spinel, phlogopite, apatite, and primary carbonate and serpentine. Kimberlites crosscut all types of rocks.
DEPOSIT FORM: Kimberlites commonly occur in steep-sided, downward tapering, cone-shaped diatremes which may have complex root zones with multiple dikes and "blows". Diatreme contacts are sharp. Surface exposures of diamond-bearing pipes range from less than 2 up to 146 hectares (Mwadui). In some diatremes the associated crater and tuff ring may be preserved. Kimberlite craters and tuff cones may also form without associated diatremes (e.g. Saskatchewan); the bedded units can be shallowly-dipping. Hypabyssal kimberlites commonly form dikes and sills.
TEXTURE/STRUCTURE: Diamonds occur as discrete grains of xenocrystic origin and tend to be randomly distributed within kimberlite diatremes. In complex root zones and multiphase intrusions, each phase is characterized by unique diamond content (e.g. Wesselton, South Africa). Some crater-facies kimberlites are enriched in diamonds relative to their associated diatreme (e.g. Mwadui, Tanzania) due to winnowing of fines. Kimberlite dikes may display a dominant linear trend which is parallel to joints, dikes or other structures.
ORE MINERALOGY: Diamond.
GANGUE MINERALOGY (Principal and subordinate): Olivine, phlogopite, pyrope and eclogitic garnet, chrome diopside, magnesian ilmenite, enstatite, chromite, carbonate, serpentine; monticellite, perovskite, spinel, apatite. Magma contaminated by crustal xenoliths can crystallize minerals that are atypical of kimberlites.
ALTERATION MINERALOGY: Serpentinization in many deposits; silicification or bleaching along contacts. Secondary calcite, quartz and zeolites can occur on fractures. Diamonds can undergo graphitization or resorption.
WEATHERING: In tropical climates, kimberlite weathers quite readily and deeply to "yellowground" which is predominantly comprised of clays. In temperate climates, weathering is less pronounced, but clays are still the predominant weathering product. Diatreme and crater facies tend to form topographic depressions while hypabyssal dikes may be more resistant.
ORE CONTROLS: Kimberlites typically occur in fields comprising up to 100 individual intrusions which often group in clusters. Each field can exhibit considerable diversity with respect to the petrology, mineralogy, mantle xenolith and diamond content of individual kimberlites. Economically diamondiferous and barren kimberlites can occur in close proximity. Controls on the differences in diamond content between kimberlites are not completely understood. They may be due to: depths of origin of the kimberlite magmas (above or below the diamond stability field); differences in the diamond content of the mantle sampled by the kimberlitic magma; degree of resorption of diamonds during transport; flow differentiation, batch mixing or, some combination of these factors.
GENETIC MODEL: Kimberlites form from a small amount of partial melting in the asthenospheric mantle at depths generally in excess of 150 km. The magma ascends rapidly to the surface, entraining fragments of the mantle and crust, en route. Macroscopic diamonds do not crystallize from the kimberlitic magma. They are derived from harzburgitic peridotites and eclogites within regions of the sub-cratonic lithospheric mantle where the pressure, temperature and oxygen fugacity allow them to form. If a kimberlite magma passes through diamondiferous portions of the mantle, it may sample and bring diamonds to the surface provided they are not resorbed during ascent. The rapid degassing of carbon dioxide from the magma near surface produce fluidized intrusive breccias (diatremes) and explosive volcanic eruptions.
ASSOCIATED DEPOSIT TYPES: Diamonds can be concentrated by weathering to produce residual concentrations or within placer deposits (C01, C02, C03). Lamproite-hosted diamond deposits (N03) form in a similar manner, but the magmas may be of different origin.
COMMENTS: In British Columbia the Cross kimberlite diatreme and adjacent Ram diatremes (MINFILE # - 082JSE019) are found near Elkford, east of the Rocky Mountain Trench. Several daimond fragments and one diamond are reported from the Ram pipes.
EXPLORATION GUIDES
GEOCHEMICAL SIGNATURE: Kimberlites commonly have high Ti, Cr, Ni, Mg, Ba and Nb values in overlying residual soils. However, caution must be exercised as other alkaline rocks can give similar geochemical signatures. Mineral chemistry is used extensively to help determine whether the kimberlite source is diamondiferous or barren (see other exploration guides). Diamond-bearing kimberlites can contain high-Cr, low-Ca pyrope garnets (G10 garnets), sodium-enriched eclogitic garnets, high chrome chromites with moderate to high Mg contents and magnesian ilmenites.
GEOPHYSICAL SIGNATURE: Geophysical techniques are used to locate kimberlites, but give no indication as to their diamond content. Ground and airborne magnetometer surveys are commonly used; kimberlites can show as either magnetic highs or lows. In equatorial regions the anomalies are characterized by a magnetic dipolar signature in contrast to the "bulls-eye" pattern in higher latitudes. Some kimberlites, however, have no magnetic contrast with surrounding rocks. Some pipes can be detected using electrical methods (EM, VLF, resistivity) in airborne or ground surveys. These techniques are particularly useful where the weathered, clay-rich, upper portions of pipes are developed and preserved since they are conductive and may contrast sufficiently with the host rocks to be detected. Ground based gravity surveys can be useful in detecting kimberlites that have no other geophysical signature and in delineating pipes. Deeply weathered kimberlites or those with a thick sequence of crater sediments generally give negative responses and where fresh kimberlite is found at surface, a positive gravity anomaly may be obtained.
OTHER EXPLORATION GUIDES: Indicator minerals are used extensively in the search for kimberlites and are one of the most important tools, other than bulk sampling, to assess the diamond content of a particular pipe. Pyrope and eclogitic garnet, chrome diopside, picroilmenite, chromite and, to a lesser extent, olivine in surficial materials (tills, stream sediments, loam, etc.) indicate a kimberlitic source. Diamonds are also usually indicative of a kimberlitic or lamproitic source; however, due to their extremely low concentration in the source, they are rarely encountered in surficial sediments. Weathered kimberlite produces a local variation in soil type that can be reflected in vegetation.
ECONOMIC FACTORS
TYPICAL GRADE AND TONNAGE: When assessing diamond deposits, grade, tonnage and the average value ($/carat) of the diamonds must be considered.. Diamonds, unlike commodities such as gold, do not have a set value. They can be worth from a few $/carat to thousands of $/carat depending on their quality (evaluated on the size, colour and clarity of the stone). Also, the diamond business is very secretive and it is often difficult to acquire accurate data on producing mines. Some deposits have higher grades at surface due to residual concentration. Some estimates for African producers is as follows:
PipeTonnage (Mt)Grade (carats*/100 tonne)
Orapa117.868
Jwaneng44.3140
Venetia66120
Premier33940
* one carat of diamonds weighs 0.2 grams
ECONOMIC LIMITATIONS: Most kimberlites are mined initially as open pit operations; therefore, stripping ratios are an important aspect of economic assessments. Serpentinized and altered kimberlites are more friable and easier to process.
END USES: Gemstones; industrial uses such as abrasives.
IMPORTANCE: In terms of number of producers and value of production, kimberlites are the most important primary source of diamonds. Synthetic diamonds have become increasingly important as alternate source for abrasives.

Aromatites

Aromatites
Fonte: CSIRO
spinifex texture in komatiite from Mt KeithKomatiites are a remarkable class of ultramafic (very magnesium-rich) lavas which are, with very few exceptions, restricted to the first half of the earth's history. A remarkable global outpouring of komatiites occurred around 2700 million years ago, and komatiites of this age host a significant proportion of the world's sulfide nickel resources.
Komatiites were exeptionally hot. The most extreme examples probably erupted at temperatures in excess of 1600 degrees C. At this temperature, the lavas would have been extremely fluid, with viscosities approaching that of water. However, our research leads us to believe that they were erupted by much the same mechanisms that govern modern basalt lava flows.
Nickel sulfide deposits in komatiites occur largely within linear, olivine-choked lava pathways which may originally have formed as lava tubes, within regionally extensive flow fields (see diagram below). The origin of these deposits remains controversial, but several lines of evidence strongly favour a hypothesis referred to variously as "ground melting", "thermal erosion" or "substrate erosion". According to this hypothesis, komatiite lavas melted and eroded the ground they flowed over, causing the lavas to become contaminated by this molten substrate. Where the substrate contained high proportions of sulfur, this caused an immiscible suflide melt to form, in the same way a molten sulfide matte forms in a blast furnace, with the komatiite lava being analogous to the slag. The immiscible sulfide melt scavenged Ni, Cu and platinum group metals from the silicate melt, forming an "ore magma". Orebodies formed where this ore magma pooled and froze at the floor of the flowing lava. The erosion process, and the accumulation of sulfide ores, are restricted to the major flow pathways within the lava flow lobe, as illustrated
Figure 1. Schematic diagram illustrating the genesis of sulphide ores in komatiite lava-flows.
The Ni-Cu-PGE Group (formerly known as the Magmatic Ore Deposits Group) has carried out an extended program of research on the characteristics and origin of these deposits, which include some of the world's most important Ni resources (see below). Our main lines of enquiry have been:
The volcanology of komatiites - how were they erupted, and under what conditions could they erode their substrates? Can this knowledge be used to guide exploration in metamorphosed and deformed terrains?
Lithogeochemical indicators - can chemical indicators of mineralising processes be detected in komatiite suites, and if so, can they be used to prioritise exploration targets?

Mina de Palito tem a maior produção de ouro histórica

Mina de Palito tem a maior produção de ouro histórica 




A junior inglesa Serabi informou no seu balancete trimestral que a sua mina Palito no Pará produziu 7.759 onças de ouro.

A mina atingiu o seu recorde mensal de produção, de 3.005 onças de ouro, em março.

A Serabi espera manter a produção de março nos próximos meses e atingir a meta de 35.000 onças em 2015.

O teor médio do minério processado foi de 10,9 g/t de ouro.

No seu prerss release a Serabi não informou o seu all-in sustaing cost por onça. Acredita-se que esteja ao redor de US$950/onça.

As ações da empresa subiram 10%.