segunda-feira, 11 de abril de 2016

PEDRAS PRECIOSAS PARTE-1

Água-marinha 

NOMES UTILIZADOS PELO MERCADOágua-marinha de Madagascar - azul médio.
CORDe azul esverdeado ao azul, geralmente de tonalidade clara.
VARIEDADESágua-marinha olho-de-gato.

 
Alexandrita 

NOMES UTILIZADOS PELO MERCADOnenhum conhecido
CORà luz do dia: verde amarelado, amarronzado, acinzentado ou azulado.
à luz incandescente: vermelho alaranjado, amarronzado ou arroxeado.
VARIEDADESalexandrita olho-de-gato (muito rara). 
Ametista 
NOMES UTILIZADOS PELO MERCADOpedra de bispo, ametista siberiana.CORDe roxo azulado ao roxo puro e ao roxo avermelhado.VARIEDADESametrino, variedade bi-color de ametista com citrino, também chamada ametista citrino.
          

Letseng é um kimberlito excepcional.

Letseng é um kimberlito excepcional.



 
Letseng é um kimberlito excepcional. A jazida está situada no montanhoso Lesotho, um enclave da África do Sul e tem uma história bastante peculiar.

Letseng é um desses kimberlitos de baixíssimo teor.

Imagine só que cem toneladas de minério produzem 3 quilates de diamante, apenas 600 miligramas.

Some a esse problema o fato de que em Letseng o tamanho médio das pedras é elevado e veremos que são necessárias milhares de toneladas para termos alguma produção de diamante.

Foi essa característica ímpar que literalmente matou vários programas de pesquisa efetuados neste kimberlito ao longo de 20 anos. Os geólogos não conseguiam entender qual seria o volume médio a ser amostrado para a obtenção de um teor médio.

Vários tentaram e somente um conseguiu.

A equipe que teve sucesso calculou que seriam necessárias, no mínimo, 1 milhão de toneladas de amostra para se ter um estudo representativo sobre os teores a qualidade e tamanho das pedras de Letseng, parâmetros fundamentais para a construção de um cash flow preciso.

Em outras palavras, o minerador teve que fazer uma lavra piloto para obter esses dados.

Foi essa percepção e enorme investimento que transformaram Letseng em uma das minas mais bem sucedidas de diamantes do mundo.

Eles descobriram que o kimberlito estatisticamente produz pedras enormes com alta qualidade. O sonho de todo o minerador.

Pois foi, mais uma vez, em Letseng que o mundo viu maravilhado a venda de mais uma pedra de grande tamanho.

A foto mostra um diamante branco com 314 quilates, de altíssima qualidade, que foi vendido nesta semana por US$19,3 milhões de dólares. Já é o segundo diamante, maior que 300 quilates, descoberto em Letseng neste ano.

Apesar da idade a mina continua a pleno vapor. Um recente programa de sondagem exploratória ampliou as reservas de Letseng até 350m de profundidade.

Ref: esmeralda, veio, tipo Colômbia

Ref: esmeralda, veio, tipo Colômbia  
Simandl, G.J., Paradis, S. and Birkett, T. (1999): Colombia-type Emeralds; in Selected British Columbia Mineral Deposit Profiles, Volume 3, Industrial Minerals, G.J. Simandl, Z.D. Hora and D.V. Lefebure, Editors, British Columbia Ministry of Energy and Mines, Open File 1999-10.
IDENTIFICATION
SYNONYMS: Emerald veins, Muzo and Chivor-type emerald deposits.
COMMODITY: Emeralds (pale-green and colorless beryl gemstones).
EXAMPLES (British Columbia - Canadian/International): No Colombia-type emerald deposits are known in British Columbia. Chivor, La Mina Glorieta, Las Cruces, El Diamante, El Toro, La Vega de San Juan, Coscuez and Muzo (Colombia).
GEOLOGICAL CHARACTERISTICS
CAPSULE DESCRIPTION:  Colombia-type emerald deposits consist mainly of carbonate-pyrite-albite quartz veins forming "en échellon" or conjugate arrays and cementing breccias. So called "stratiform tectonic breccias" may also contain emeralds. Emeralds are disseminated in the veins as clusters, single crystals or crystal fragments; however, the best gemstones are found in cavities. Country rocks are black carbonaceous and calcareous shales.
TECTONIC SETTING: Probably back arc basins (shales deposited in epicontinental marine anoxic environments spatially related to evaporites) subjected to a compressional tectonic environment.
DEPOSITIONAL ENVIRONMENT / GEOLOGICAL SETTING: The deposits are controlled by deep, regional decollements, reverse or thrust faults; hydraulic fracture zones, intersections of faults and by permeable arenite beds interbedded with impermeable black shales.
AGE OF MINERALIZATION:  Colombian deposits are hosted by Cretaceous shales. Ar/Ar laser microprobe studies of Cr-V-K-rich mica, believed to be penecontemporaneous with the emerald mineralization, indicate 32 to 38 Ma for Muzo area and 65 Ma for Chivor district. It is not recommended to use these age criteria to constrain the exploration programs outside of Columbia.
HOST/ASSOCIATED ROCKS:  Emerald-bearing veins and breccias are hosted mainly by black pyritiferous shale, black carbonaceous shale and slate. Claystone, siltstone, sandstone, limestone, dolomite, conglomerate and evaporites are also associated. Two special lithologies described in close association with the deposits are albitite (metasomatized black shale horizons) and tectonic breccias ("cenicero"). The latter consist of black shale and albitite fragments in a matrix of albite, pyrite and crushed black shale.
DEPOSIT FORM: The metasomatically altered tectonic blocks may be up to 300 metres in width and 50 km in length (Beus, 1979), while individual productive zones are from 1 to 30 metres in thickness. Emeralds are found in en échelon and conjugate veins that are commonly less than 10 centimetres thick, in hydraulic breccia zones and in some cases in cenicero.
TEXTURE/STRUCTURE:  Emeralds are found disseminated in veins as clusters, single crystals or crystal fragments, however, the best gemstones are found in cavities. Quartz is cryptocrystalline or forms well developed hexagonal prisms, while calcite is fibrous or rhombohedral. In some cases, emerald may be found in black shale adjacent to the veinlets or cenicero.
ORE MINERALOGY: Emerald; beryl specimens and common beryl.
GANGUE MINERALOGY [Principal and subordinate]: Two vein stages are present and may be superimposed, forming composite veins. A barren stage 1 consisting mainly of fibrous calcite and pyrite and a productive second stage with associated rhombohedral calcite and dolomite, albite or oligoclase, pyrite, ± quartz and minor ± muscovite, ± parisite, ± fluorite, ± barite, ± apatite, ± aragonite, ± limonite and anthracite/graphite-like material. Some pyrite veins also contain emeralds. Cavities within calcite-rich veins contain best emerald mineralization.
Solid inclusions within emerald crystals are reported to be black shale, anthracite/graphite-like material , calcite, dolomite or magnesite (?), barite, pyrite, quartz, albite, goethite and parisite.

 

ALTERATION MINERALOGY: Albitization, carbonatization, development of allophane by alteration of albite, pervasive pyritization and development of pyrophyllite at contacts between veins and host rocks has also been reported.
WEATHERING:  In Columbia the intense weathering and related alteration by meteoric water of stratiform breccias and albitites are believed to be responsible for the formation of native sulfur, kaolinite and gypsum. Albite in places altered to allophane.
ORE CONTROLS: Deep, regional fault systems (reverse or thrust); intersections of faults; breccia zones; permeable arenites interbedded with impermeable shales.
GENETIC MODELS:  The hypotheses explaining the origin of these deposits are fast evolving. The most recent studies favor a moderate temperature, hydrothermal-sedimentary model. Compressional tectonics result in formation of decollements that are infiltrated by alkaline fluids, resulting in albitization and carbonatization of shale and mobilization of Be, Al, Si, Cr, V and REE. The alkaline fluids are believed to be derived from the evaporitic layers or salt diapirs. As the regional compression continues, disharmonic folding results in the formation of fluid traps and hydrofracturing. A subsequent decrease in fluid alkalinity or pressure could be the main factor responsible for emerald precipitation. Organic matter is believed to have played the key role in emerald precipitation (Cheilletz and Giuliani, 1996, Ottaway et al., 1994).
ASSOCIATED DEPOSIT TYPES: Spatially associated with disseminated or fracture-related Cu, Pb, Zn, Fe deposits of unknown origin and barite and gypsum (F02) deposits.
COMMENTS: Colombia-type emerald deposits differ from the classical schist-hosted emerald deposits (Q07) in many ways. They are not spatially related to known granite intrusions or pegmatites, they are not hosted by mafic/ultramafic rocks, and are emplaced in non-metamorphosed rocks. Green beryls, where vanadium is the source of colour, are described at Eidsvoll deposit (Norway) where pegmatite cuts bituminous schists. Such deposits may be better classified as pegmatite-hosted.
EXPLORATION GUIDES
GEOCHEMICAL SIGNATURE: Black shales within the tectonic blocks are depleted in REE, Li, Mo, Ba, Zn, V and Cr. The albitized zones contain total REE<40 ppm while unaltered shales have total REE values of 190 ppm. Stream sediments associated with altered shales have low K/Na ratio. Soils overlying the deposits may have also low K/Na ratio.
GEOPHYSICAL SIGNATURE:  Geophysics may be successfully used to localize major faults where outcrops are lacking. The berylometer, has applications in ground exploration.
OTHER EXPLORATION GUIDES: Regional indicators are presence of beryl showings, available sources of Cr and Be and structural controls (decollement, reverse faults, fault intersections). In favourable areas, exploration guides are bleached zones, albitization and pyritization. White metasomatic layers within black shale described as albitites, and stratiform polygenetic breccias consisting of black shale fragments cemented by pyrite, albite and shale flour are closely associated with the mineralization.
ECONOMIC FACTORS
TYPICAL GRADE AND TONNAGE: Distribution of emeralds within the mineralized zones is erratic; therefore, pre-production tonnage estimates are difficult to make. The official grade reported for Colombian deposits is approximately 1 carat/m3. All stones are valued according to size, intensity of the green colouration and flaws, if present. Tonnages for individual deposits are unknown; however, Chivor reportedly produced over 500,000 carats between 1921 and 1957.
ECONOMIC LIMITATIONS: The earliest developments were by tunneling. To reduce mining costs benching, bulldozing and stripping of mountainsides were introduced. Recently, apparently to reduce environmental pressures, underground developments have been reintroduced at Muzo. Physical and chemical properties of high-quality synthetic emeralds match closely the properties of natural stones. There is currently uncertainty if synthetic emeralds can be distinguished from the high-quality, nearly inclusion-free natural specimens. Recent attempts to form an association of emerald producers may have a similar effect on emerald pricing as the Central Selling Organization has on diamond pricing.
END USES: Highly-valued gemstones.
IMPORTANCE: Currently, world production of natural emeralds is estimated at about $US 1 billion. In 1987 ECONOMINAS reported emerald production of 88,655,110 carats worth US$ 62,910,493. Colombia is the largest producer of natural emeralds by value; most of the gemstones come from the Muzo and Chivor districts. The other major producing countries are Brazil, Zambia, Zimbabwe, Pakistan, Afghanistan, Russia and Madagascar which have schist-hosted emerald deposits (Q07). Brazil is the world’s largest producer of emeralds by weight.

SCHIST-HOSTED EMERALDS

SCHIST-HOSTED EMERALDS
by: G.J. Simandl1, S. Paradis2 and T. Birkett3

Ref:: Esmeraldas, xistos, berilo, pegmatito, biotita, glimerito
  Simandl, G.J., Paradis, S. and Birkett, T. (1999): Schist-hosted Emeralds; in Selected British Columbia Mineral Deposit Profiles, Volume 3, Industrial Minerals, G.J. Simandl, Z.D. Hora and D.V. Lefebure, Editors, British Columbia Ministry of Energy and Mines, Open File 1999-10.
IDENTIFICATION
SYNONYMS: Emerald deposits commonly described as "suture zone-related", "pegmatite-related schist-hosted" or "exometamorphic", "exometasomatic", "biotite schist-type", "desilicated pegmatite related" and "glimerite-hosted" are covered by this model.
COMMODITIES (BYPRODUCTS): Emerald (industrial grade beryl, other gemstones, such as aquamarine, chrysoberyl, phenakite, tourmaline).
EXAMPLES (British Columbia - Canadian/International): Socoto and Carnaiba deposits (Brazil), Habachtal (Austria), Perwomaisky, Mariinsky, Aulsky, Krupsky, Chitny and Tsheremshansky deposits (Russia), Franqueira (Spain), Gravelotte mine (South Africa), Mingora Mines (Pakistan).
GEOLOGICAL CHARACTERISTICS
CAPSULE DESCRIPTION: Emerald deposits principally related to mafic and ultramafic schists or unmetamorphosed ultramafic rocks in contact with felsic rocks, either pegmatoid dykes, granitic rocks, paragneisses or orthogneisses. Such contacts may be either intrusive or tectonic.
TECTONIC SETTING: Found in cratonic areas as well as in mobile belts. In many cases related to major Phanerozoic or Proterozoic suture zones that may involve island arc-continent or continent-continent collision zones. The lithological assemblages related to suture zones commonly form a "tectonic mélange" and in some areas are described as "ophiolitic melange".
DEPOSITIONAL ENVIRONMENT / GEOLOGICAL SETTING: Mainly in greenstone belts, but also in other areas where Cr-bearing rocks may be adjacent to pegmatites, aplites, granites and other felsic rocks rich in beryllium. Metamorphic grade is variable; however, it typically reaches green schist to amphibolite facies.
AGE OF MINERALIZATION: The deposits are hosted by Archean age rocks or younger. The age of mineralization is typically linked to either a period of tectonic activity or a time of pegmatoid emplacement.
HOST/ASSOCIATED ROCKS: Biotite schists ("biotites", "phlogopitites" and "glimerites") are a particularly favourable host. Other favourable hosts are metamorphosed mafic volcanic rocks, such as epidote-chlorite-actinolite-bearing rock, chlorite and chlorite-talc schists, talc and talc-carbonate schists, white mica schists, mafic schists and gneisses and amphibolites. Less commonly emeralds occur in unmetamorphosed mafic or ultramafic rocks and possibly listwaenites. Pegmatites or quartz veins in the contact zone between granitic rocks and mafic rocks may in some cases host emeralds. A wide variety of rocks can be associated with schist-hosted emerald deposits, including granite, syenite, tonalite, granodiorite, a variety of orthogneisses, marbles, black phyllites, white mica schists, mylonites, cataclasites and other metasedimentary rocks.
DEPOSIT FORM: Most of the mineralization is hosted by tabular or lenticular mafic schists or "blackwall zones". Favourable zones are a few metres to tens of metres wide and follow the contacts between felsic and mafic/ultramafic lithologies for distances of tens to hundreds of metres, but economically minable portions are typically much smaller. For example, minable bodies in the Urals average 1 metre in thickness and 25 to 50 metres in length. Pegmatoids, where present, may form horizontal to steeply dipping pods, lens-shaped or tabular bodies or anastomosing dykes which may be zoned.
TEXTURE/STRUCTURE: In blackwall or schists lepidoblastic texture predominates. The individual, discrete emerald-bearing mafic layers within the favourable zones may be complexly folded, especially where the mineralization is not spatially associated with pegmatites. Emeralds are commonly zoned. They may form porphyroblasts, with sigmoidal orientation of the inclusion trails; beryl may form the rims separating phenakite form the surrounding biotite schist; or emerald crystals may be embedded in quartz lenses within the biotite schist. Chrysoberyl may appear as subhedral porphyroblasts or skeletal intergrowths with emerald, phenakite or apatite.
Where disseminated beryl crystals also occur within pegmatites, they are short, commonly fractured, prismatic to tabular with poor terminations; but may be up to 2 metres in length and 1 metre in cross section. Long, prismatic, unfractured crystals occur mainly in miarolitic cavities.

ORE MINERALOGY: Emerald and other beryls (in some cases aquamarine or morganite), ± chrysoberyl and industrial grade beryl. Spodumene gems (in some cases kunzite) may be found in related pegmatites.
GANGUE MINERALOGY [Principal and subordinate]: In the schist: biotite and/or phlogopite, talc, actinolite, plagioclase, serpentine, ± fuchsite, ± quartz, ± carbonates, ± chlorite, ± muscovite, ± pyrite, epidote, ± phenakite, ± milarite and other beryllium species, ± molybdenite, ± apatite, ± garnet, ± magnetite, ± ilmenite, ± chromite, ± tourmaline, ± cassiterite.
In the pegmatoids: feldspars (commonly albite), quartz, micas; ± topaz, ± phenakite , ± molybdenite, ± Sn and W-bearing minerals, ± bazzite, ± xenotime, ± allanite, ± monazite, ± phosphates, ± pollucite, ± columbite-tantalite, ± kyanite, zircon, ± beryllonite, ± milarite and other beryllium species. Emerald crystals may contain actinolite-tremolite, apatite, biotite, bityite, chlorite, chromite, columbite-tantalite, feldspar, epidote, fuchsite, garnet, hematite, phlogopite, pyrrhotite, rutile, talc, titanite and tourmaline inclusions.

ALTERATION MINERALOGY: Limonitization and pyritization are reported in the host rocks. Kaolinite, muscovite, chlorite, margarite, bavenite, phenakite, epidimyte, milarite, bityite, bertrandite, euclase are reported as alteration products of beryl.
WEATHERING: Weathering contributes to the economic viability of the deposits by softening the matrix, and concentrating the beryl crystals in the overlaying soil or regolith.
ORE CONTROLS:
1) The principal control is the juxtaposition of beryllium and chromium-bearing lithologies along deep suture zones. Emerald crystals are present mainly within the mafic schists and in some cases so called "blackwall zones" as described ultramafic-hosted talc deposits (M07). In this settings it may be associated with limonite zones.
2) This often occurs near the contacts of pegmatoids with mafic schists. Emerald crystals are present mainly within the mafic schists, although in some cases some of the mineralization may be hosted by pegmatoids.
3) Another prospective setting is along fracture-controlled glimmerite zones.
4) Mineralization may be concentrated along the planes of regional metamorphic foliation, especially in cores of the folds where the relatively high permeability favors chemical exchange and the development of synmetamorphic reaction zones between chromium and beryllium-bearing lithologies.
5) Serpentinite roof pendants in granites are prospective.

GENETIC MODELS: The origin of schist-hosted emerald deposits is controversial as is the case with many deposits hosted by metamorphic rocks. All emerald deposits require special geological conditions where chromium (± vanadium) and beryllium coexist. Where pegmatoids or plagioclase-rich lenses occur within ultramafic rocks, the crystalization of emeralds is commonly explained by interaction of pegmatites or pneumatolytic-hydrothermal, Be-bearing fluids with Cr-bearing mafic/ultramafic rocks. In other cases, emeralds in schists form by syn- or post-tectonic regional metamorphic chemical exchange (metasomatism) between felsic rocks, such as felsic gneisses, garnet mica schists or pre-metamorphic pegmatoids, with the adjacent Cr-bearing rocks such as schists, gneisses or serpentinites. Contacts between Cr- and Be-bearing source rocks may be tectonic, as is the case for "suture zone-related" deposits.
ASSOCIATED DEPOSIT TYPES: Feldspar-quartz and muscovite pegmatites (O03, O04). Mo and W mineralization may be associated with emeralds. Some porphyry W deposits (L07) have associated beryl. Tin-bearing granites are in some cases associated with emeralds. Gold was mined at Gravelotte Emerald Mines (no information about the gold mineralization is available).
COMMENTS: Recently, microprobe studies have shown that the green color of some beryls is due to vanadium rather than chrome. In most cases both Cr and V were detected in the beryl crystal structure. There are two schools of gemmologists, the first believes that strictly-speaking the vanadium-rich beryls are not emeralds. The second school believes that gem quality beryls should be named based on their physical, and more particularly, color properties. It is possible that pegmatoid-related or suture zone-related emerald deposits hosted by black shales or other chromium and/or vanadium-bearing rocks will be discovered. In those cases it will be difficult to decide if these deposits are schist-hosted or Columbia-type (Q06) emeralds.
EXPLORATION GUIDES
GEOCHEMICAL SIGNATURE: The presence of beryl in eluvial and alluvial deposits is good pathfinder. The distribution of beryllium in stream sediments proved to be useful in Norway when coupled with identification of the individual drainage basins and knowledge of the geological environment.
GEOPHYSICAL SIGNATURE:  A portable field detector that uses 124Sb as a gamma radiation source, the berylometer, is used to detect Be in outcrop. The instrument should be held less than 4 cm from the sample. Radiometric surveys may be useful in detecting associated radioactive minerals where pegmatites are involved. Magnetic and electromagnetic surveys may be useful in tracing suture zones where ultramafic rocks and felsic rocks are faulted against each other.
OTHER EXPLORATION GUIDES: Any Be occurrences in a favorable geological setting should be considered as positive indicators. If green, chromium and/or vanadium-bearing beryls are the main subject of the search then ultramafic rocks, black shales or their metamorphic equivalents represent the most favorable host rocks. If exploration is focused on a variety of gem-quality beryls (not restricted to emerald), or if the targeted area is not mapped in detail, then Be occurrences without known spatial association with Cr- or V-bearing lithologies should be carefully considered. Minerals associated with emeralds in the ores may be considered as indirect indicators. A wide variety of field-tests based on fluorescence, alkalinity, staining, density and refractive index have been used in the past to distinguish beryl.
ECONOMIC FACTORS
TYPICAL GRADE AND TONNAGE: The grade and tonnage of these deposits is difficult to estimate due to erratic emerald contents (gram/tonne), episodic nature of the mining activity which often results in high grading, and variability in the quality of gemstones (value/carat). For example, at the Mingora mines in Islamia Trench two, 15 to 30 centimetres thick layers of talc-rich rock surrounding quartz lenses contained 1000 to 5000 carats of good stones up to 30 carats in size. Some of the individual pits in the area produced less than 1000 carats. The cumulative production of the Mingora emerald mines was reported between 20 000 to over 50 000 carats/year between 1979 and 1988. At Gravelotte Emerald Mine, at least 23 000 kg of emeralds of varying grades have been produced since 1929 from several zones. For the same mine promotional literature states that " conservative estimates" of ore within the Cobra pit are 1.69 million tonnes that could result in production of 17 000 kg of emeralds ( approximately 1gram /tonne). It is estimated that about 30% of the emeralds could be sold, but only 2-3% of these are believed to be gem quality. In the Urals the Mariinsky deposit was explored to a average depth of 500 metres by boreholes and underground workings. To determine emerald content, bulk samples as large as 200 tonnes are taken systematically at 100 metres interval along the favourable zone. No grade and tonnage are available.
ECONOMIC LIMITATIONS: Mining of precious stones in underdeveloped countries and smaller deposits is done using pick and shovel with limited use of jackhammers and bulldozers. Larger schist-hosted emerald deposits, may be successfully exploited by a combination of surface and underground mining. The Mariinsky deposit was mined by open pit to the depth of 100 metres and is exploited to the depth of 250 metres by underground methods. "Low impact" explosives, expanding plastics or hydraulic wedging are used to break the ore. The ore is milled, screened and manually sorted.
END USES: Transparent and colored beryl varieties, such as emerald, morganite and aquamarine, are highly valued gemstones. Industrial grade beryls commonly recovered as by-products are a source of Be oxide, Be metal alloys used in aerospatial and defence applications, Be oxide ceramics, large diameter berylium-copper drill rods for oil and gas, fusion reactors, electrical and electronic components. Berylium metal and oxides are strategic substances, and may be substituted for by steel, titanium and graphite composites in certain applications. Phosphor bronze may replace beryllium-copper alloys. However, all known substitutes offer lower performance than Be-based materials.
IMPORTANCE: Schist-hosted deposits are the most common source of emeralds, although the largest and most valuable gemstones are most frequently derived from the Colombia-type deposits. Besides schist-hosted deposits and pegmatites, beryl for industrial applications may be also be present in fertile granite and syenite complexes that may be parent to pegmatites. A major portion of the beryl ore used in the U.S.A. as raw material for beryllium metal is recovered as a byproduct of feldspar and quartz mining from pegmatites.

domingo, 10 de abril de 2016

O berilo gemas e esmeralda são as duas formas de berílio silicato de alumínio, Be3Al2 (SiO 3) 6.

História

O berilo gemas e esmeralda são as duas formas de berílio silicato de alumínio, Be3Al2 (SiO 3) 6.
O mineralogista francês Abbé René-Just Haüy pensei que eles poderiam abrigar um novo elemento, e ele perguntou Nicholas Louis Vauquelin, analisá-las e ele percebeu que abrigava um novo metal e ele investigou-lo.
Em fevereiro 1798 Vauquelin anunciou a sua descoberta na Academia Francesa e nomeado o glaucinium elemento (glykys gregas = doce) porque seus compostos era doce.
Outros preferiram o nome de berílio, com base na pedra preciosa, e este é agora o nome oficial.
Berílio metálico foi isolado em 1828 por Friedrich Wöhler em Berlim e de forma independente por Antoine-Brutus Alexandere-Bussy em Paris, ambos os quais extraiu-lo a partir de cloreto de berílio (BeCl 2) fazendo reagir este com potássio.
Berílio Be é um metal alcalino terroso pertencente ao segundo grupo da Tabela Periódica.
O berílio ocorre nos minerais berilo (3 BeO. Al2O3.6 SiO2) e crisoberilo (BeO. Al 2O3).
A esmeralda, a água marinha e o berilo são as gemas dos silicatos de alumínio e berílio.
O metal é extraído a partir da mistura fundida de BeF2 / NaF por eletrólise ou por redução de magnésio por BeF2.
É usado na manufatura de ligas de Be – Cu que são utilizadas em reatores nucleares como refletores e moderadores devido à sua pequena seção transversal.
O óxido de berílio é usado em cerâmicas e em reatores nucleares.
O berílio e seus compostos são tóxicos e podem causar graves doenças pulmonares e dermatites.
O metal é resistente à oxidação pelo ar devido à formação de uma camada de óxido mas reage com os ácidos clorídrico e sulfúrico diluídos.
Os compostos de berílio apresentam forte caráter covalente.
O elemento foi isolado independentemente pelos pesquisadores F. Wohler e A. A. Bussy em 1828.
Berílio
Berilos lapidados originários dos Estados de Minas Gerais, Bahia e Rio Grande do Norte. 
A variação na cor é conseqüência de variedade na composição
Berílio
Cristal de esmeralda de 8 cm, do estado da Bahia.
A esmeralda é um aluminossilicato que adquire a cor verde devido 
à presença de impurezas de cromo
Berílio
Amostra de água marinha de 450 gramas. A água marinha também é um 
aluminossilicato e a cor azulada deve-se à presença de pequenas quantidades de ferro.

Símbolo - Be

Número atômico: 4
Massa atômica: 9.012182 amu
Ponto de fusão: 1278,0 ° C (K 1551,15, 2332,4 ° F)
Ponto de ebulição: 2970,0 ° C (3.243,15 K, 5378,0 ° F)
Número de prótons / Elétrons: 4
Número de nêutrons: 5
Classificação: Alcalinoterrosos
Densidade @ 293 K: 1,8477 g / cm3
Cor: cinza
Data da descoberta:
 1798
Descobridor: Fredrich Wohler
Nome de Origem: A partir do berilo mineral
Usos: naves espaciais, mísseis, aviões
Obtido a partir de: berilo, chrysoberyl

Estrutura atômica

Berílio
Número de níveis de energia: 2
Primeiro Nível de energia: 2 
Segundo Nível de energia: 2

Usos

Berílio é usado em ligas com cobre ou níquel para fazer giroscópios, molas, contatos elétricos, ponto-de soldagem eletrodos e ferramentas que não produzam faíscas. Misturando berílio com estes metais aumenta sua condutividade elétrica e térmica.
Outras ligas de berílio são usados ? como materiais estruturais para aeronaves de alta velocidade, mísseis, veículos espaciais e satélites de comunicação.
Berílio é relativamente transparente aos raios-X de modo folha de berílio ultra-fino está encontrando uso em litografia de raio-X.
Berílio também é usado em reatores nucleares como um refletor ou moderador de nêutrons.
O óxido tem um ponto de fusão muito elevado tornando-se útil no trabalho nuclear, bem como com aplicações cerâmicas.
O Berílio é usado em engrenagens e rodas dentadas particularmente na indústria da aviação.

Propriedades físicas

Berílio é duro, um metal frágil com uma superfície branco-acinzentado.
É o denso (mais claro) do metal menos que pode ser utilizado na construção.
O seu ponto de fusão é de 1287 ° C (2349 ° F) e o ponto de ebulição é estimada ser de cerca de 2.500 ° C (4.500 ° F).
A sua densidade é de 1,8 gramas por centímetro cúbico.
O metal tem uma elevada capacidade calorífica (que pode armazenar calor) e condutividade térmica (que pode transferir o calor de forma eficiente).
Curiosamente, o berílio é transparente aos raios X. Os raios X passam através do metal sem serem absorvidos.
Por esta razão, berílio é por vezes utilizado para fazer as janelas para máquinas de raios-X.

Propriedades quimicas

Berílio reage com ácidos e com água para formar hidrogênio gás.
Ele reage rapidamente com o oxigênio no ar para formar óxido de berílio (BeO).
O óxido de berílio forma uma película fina sobre a superfície do metal que impede que o metal de reagir com o oxigênio adicional.