sábado, 14 de setembro de 2019

Radiação gama torna quartzo brasileiro mais valioso

Radiação gama torna quartzo brasileiro mais valioso




Radiação gama torna quartzo brasileiro mais valioso
Quartzo extraído em São José da Safira (MG), torna-se a gema green-gold depois de ser irradiado com raios gama.
[Imagem: Rainer Schultz-Güttler]

Defeito benéfico
O quartzo, mineral abundante em praticamente todo o território brasileiro, apresenta baixo valor comercial em seu estado bruto.
Quando submetido à irradiação, contudo, atinge um valor agregado médio cerca de 300% maior.
Estima-se que 70% da produção mundial de pedras preciosas tenha passado por tratamentos de beneficiamento.
Durante a irradiação, é gerado um defeito na estrutura cristalina do mineral, ou seja, na maneira como os átomos estão organizados na chamada rede atômica.
Esse "defeito benéfico" muda as propriedades físicas e ópticas do cristal, fazendo com que ele passe a absorver ou refletir outros comprimentos de onda da luz visível.
O resultado é que um cristal absolutamente sem-graça passa a ter uma coloração límpida e reluzente, muito mais valorizado no mercado joalheiro.
Quartzo irradiado
No Brasil, as pesquisas na área são feitas no Instituto de Pesquisas Energéticas e Nucleares (IPEN).
Segundo Cyro Teiti Enokihara, pesquisador do Centro de Tecnologia das Radiações do IPEN, da mina à vitrine o caminho é longo, mas a tecnologia de irradiação está se tornando um elemento fundamental no processo de beneficiamento do quartzo brasileiro.
Os melhores resultados, segundo Cyro, foram obtidos utilizando fontes de radiação gama, aplicadas em amostras de quartzo de qualidade gemológica.
As melhores gemas artificialmente coloridas já obtidas pelos pesquisadores são verde amareladas, chamadas de green-gold, cor de mel (honey); cinza (fumê); laranja amarronzado (conhaque); preto (morion) e verde.
Todas essas gemas apresentaram boa qualidade e alta estabilidade, o que as torna valiosas no mercado joalheiro.
Radiação gama torna quartzo brasileiro mais valioso
Quartzo verde da região de Ametista do Sul (RS), no estado bruto, e após ser irradiado e lapidado. Como a radiação só interfere nos elétrons, e não no núcleo do atómo, não são gerados radionuclídeos e, portanto, o quartzo não se torna radioativo.
[Imagem: Rainer Schultz-Güttler]
Irradiação do quartzo
No IPEN, as pedras de quartzo são colocadas em dispositivos onde são submetidas à radiação ionizante proveniente de fontes de cobalto-60. O irradiador foi desenvolvido com tecnologia nacional, sob a coordenação do professor Paulo Rella.
Mas não se trata unicamente de colocar um quartzo qualquer no aparelho e esperar "assar uma gema". Tudo depende da composição química do mineral.
Alguns tipos de quartzo respondem da maneira desejada, com a radiação otimizando ou alterando sua cor, mas outros não.
Testes prévios são realizados para se detectar quais amostras podem ser submetidas ao tratamento. A pedra pode conter impurezas como ferro, alumínio, lítio, potássio e sódio, bem como moléculas de água e radicais hidroxila.
Além das impurezas presentes na estrutura cristalina do material, deve ser levado em conta também o ambiente geológico ou o local em que a pedra foi formada.
Sem radiação
O que a radiação faz é promover um desequilíbrio eletrônico, com os elétrons das camadas mais externas dos elementos sendo expelidos.
Como a radiação só interfere nos elétrons, e não no núcleo do atómo, não são gerados radionuclídeos e, portanto, o quartzo não se torna radioativo.
O tratamento apenas acelera o efeito que a natureza levaria milhares de anos para produzir.
Cyro afirma que parte considerável das pedras extraídas no Brasil é enviada ao exterior, em estado bruto, para países como Alemanha, Tailândia e China, onde passam por um processo de beneficiamento e de lapidação, e posteriormente retornam ao país em forma de joias, gerando enormes perdas econômicas para o país.
O IPEN mantém contatos permanentes com empresas de comercialização de pedras preciosas, com o intuito de realizar testes de irradiação para os quartzos de diferentes procedências e efetuar pesquisas para outros novos minerais.

Fonte:Ipen

Análise - IBOV, WINV19, WDOV19, PETR4, VALE3, BBAS3, BBSE3 e MGLU3 | 13....

O LUGAR MAIS RICO EM PEDRAS PRECIOSAS QUE EU JÁ VI!!! FICOU PARA A HISTÓ...

Quartzo MURION com várias pedras PRECIOSAS e CITRINO limão o mais RARO

Novas formas de carbono podem ser mais duras que diamante

Novas formas de carbono podem ser mais duras que diamante




Novas formas de carbono podem ser mais duras que diamante
Dentre as 43 estruturas de carbono superduras previstas, estas são algumas das mais promissoras. As gaiolas coloridas em azul estão estruturalmente relacionadas ao diamante, e as gaiolas coloridas em amarelo e verde estão estruturalmente relacionadas à lonsdaleíta.
[Imagem: Patrick Avery et al. - 10.1038/s41524-019-0226-8]

Mais duro que diamante
O carbono, o elemento no qual se baseia toda a vida na Terra, parece ter mais segredos do que se imaginava.
É certo que os cientistas têm descoberto uma série de "novas formas de carbono" nos anos recentes, mas agora foram reveladas nada menos do que 43 estruturas de carbono até então desconhecidas.
Usando técnicas computacionais, Patrick Avery e seus colegas da Universidade de Buffalo, nos EUA, estavam procurando por materiais superduros, adequados para uso em revestimentos antirrisco, brocas de perfuração e abrasivos.
"Os diamantes são atualmente o material mais duro disponível comercialmente, mas eles são muito caros. Nós queríamos encontrar algo mais duro do que um diamante. Se você encontrar outros materiais duros, potencialmente poderá torná-los mais baratos. Eles também podem ter propriedades úteis que os diamantes não possuem. Talvez eles interajam de maneira diferente com calor ou eletricidade, por exemplo," disse a professora Eva Zurek, coordenadora da equipe.
Carbono superduro
Os 43 tipos de carbono revelados pela análise - são 43 formas novas de organização dos átomos de carbono em estruturas cristalinas - dão a pinta de serem superduros e, mais importante, de serem estáveis em condições ambiente.
Uma substância é tipicamente catalogada como superdura quando apresenta um valor de dureza superior a 40 gigapascais, medido através de um experimento chamado teste de dureza Vickers.
As previsões são de que todas as 43 novas estruturas de carbono atinjam esse limite. Estima-se que três excedam ligeiramente a dureza Vickers dos diamantes, embora isso tenha que ser confirmado nos experimentos porque os cálculos têm uma margem de erro.
As três estruturas mais duras que o diamante contêm fragmentos de diamante e de lonsdaleíta, também chamada de diamante hexagonal, em suas estruturas cristalinas.
Com a estrutura cristalina prevista, os cientistas dos materiais poderão agora se dedicar a sintetizar cada uma delas, para confirmar suas propriedades.

Fonte: Site Inovação Tecnológica