sábado, 22 de agosto de 2015

Como fabricar um diamante do nada

Como fabricar um diamante do nada


De vez em quando, Dan Frost escuta um forte estampido e o chão de seu escritório vibra. Só pode ser uma coisa: um de seus experimentos explodiu de novo.
Ao descer para o laboratório, ele pode ver o susto na cara dos colegas. É como se uma pequena bomba tivesse estourado. "O barulho é assustador, mas não é perigoso. Está tudo protegido", explica ele.
As explosões fazem parte do trabalho de Frost. Cientista no Bayerisches Geoinstitut, na Alemanha, ele está tentando reproduzir as condições do manto, a camada da Terra situada a milhares de quilômetros de profundidade. Isso significa submeter rochas a algumas das pressões mais altas já conhecidas pela humanidade.
Não é de se espantar que ocorram alguns percalços.
Como parte de sua pesquisa, Frost descobriu maneiras surpreendentes de fabricar diamantes. A partir de gás carbônico, por exemplo. Ou de pasta de amendoim.
Em comparação com nossos enormes avanços na exploração espacial, sabemos bem pouco sobre o universo que se estende debaixo de nossos pés.

A geologia elementar nos explica que o interior da Terra pode ser dividido em três camadas: o núcleo, o manto e a crosta. Mas a exata composição dessas camadas ainda é um mistério. Uma enorme falha no conhecimento humano.
Pouco se sabe sobre a exata composição das camadas da Terra
"Se quisermos entender como a Terra se formou, uma das coisas que precisamos saber é o material do qual o planeta é feito", explica Frost.
Muitos geólogos assumem que a Terra é feita da mesma matéria que os meteoritos do Cinturão de Asteroides. O problema é que a maioria dos meteoritos que caem na Terra tem uma proporção mais alta de silício do que encontramos na crosta terrestre. Onde todo esse silício foi parar? Uma das teorias é de que esteja retido no manto.
Para responder a essa pergunta, Frost utiliza dois tipos de prensa. A primeira usa um potente pistão para espremer minúsculas amostras de cristais a uma pressão até 280 mil vezes mais alta do que a pressão atmosférica, ao mesmo tempo em que elas são "assadas" em uma fornalha.
Isso recria as condições das camadas superiores do manto, que ficam a cerca de 900 quilômetros abaixo da superfície terrestre, fazendo com que os átomos do cristal se rearranjem em estruturas mais densas.
Uma segunda bigorna então esmaga os minerais recém-formados para que eles ganhem um aspecto parecido com aqueles encontrados em camadas ainda mais profundas da Terra.
Esse equipamento é composto por dois minúsculos diamantes que achatam os cristais lentamente. O resultado é 1,3 milhão de vezes maior que a pressão atmosférica.
Enquanto a amostra ainda está no aparelho, o cientista mede a maneira como o som viaja através do cristal resultante. Ao comparar esses dados com a leitura de ondas sísmicas que se propagam no interior da Terra, ele pode definir se a amostra está ou não próxima da composição do manto.
Rica em carbono, a pasta de amendoim poderia servir para a 'fabricação' de diamantes
As descobertas de Frost têm sido algo surpreendentes: o manto não parece conter uma proporção suficientemente alta de silício para se equiparar à composição dos meteoritos.
"Talvez ele tenha penetrado ainda mais profundamente, até o núcleo", diz o cientista.
Outra possibilidade é que a Terra inicialmente tivesse uma crosta muito mais espessa, cheia de silício, que foi então expelido pelos inúmeros impactos de meteoritos. Ou talvez tenhamos que repensar toda a questão do material de que é feita a Terra.
O processo de pressão intensa também criou um mineral chamado ringwoodita, um silicato de ferro e magnésio de cor azul que pode reter água. A descoberta sugere que o manto pode estar escondendo "oceanos" nas profundezas da Terra.
Os experimentos podem até, intuitivamente, nos contar mais sobre o ar que respiramos. E é aqui que entram os diamantes de Frost.
Ele suspeita que uma série de processos geológicos poderia retirar CO2 dos oceanos e injetá-lo em rochas, até o manto, onde seria transformado em diamante. "Essas pedras preciosas são menos voláteis que outras formas de carbono, o que significa que elas têm menos chances de serem liberadas de volta à atmosfera", diz o cientista. Um manto cravejado de diamantes poderia, portanto, ter desacelerado o aquecimento da terra, potencialmente ajudando na evolução da vida.
Para Frost, o principal ingrediente para esse processo é o ferro. As altas pressões do manto forçam o dióxido de carbono das rochas para os minerais ricos em ferro, que retiram o oxigênio e deixam o carbono para formar um diamante.
E isso é exatamente o que Frost descobriu quando recriou o processo usando as prensas – basicamente fabricando um diamante do nada.

Nenhum comentário:

Postar um comentário