Essa rocha é um meteorito?
A motivação para escrever esse artigo veio das inúmeras consultas sobre como identificar meteoritos que tenho recebido através do site. Uma resposta para essa pergunta pode ser difícil até mesmo para os especialistas mais experientes. Não há profissão formal qualificada para essa análise. A que mais se aproxima é a de geólogo. Porém esses foram treinados para identificar rochas terrestres e a menos que um geólogo não tenha se especializado e experiência com meteoritos não irá conseguir fazer uma identificação melhor do que uma pessoa que tenha estudado e esteja habituada a fazer isso [1]. A vasta maioria de caçadores e colecionadores de meteoritos não é formada por geólogos e muitos deles adquiriram com o tempo uma grande experiência nessa área.
Recentemente no caso de Varre-Sai tenho também visto muitos astrônomos que se tornaram especialistas em meteoritos de um dia para o outro. Provavelmente sem nunca ter visto um meteorito na vida. A mídia sensacionalista do Brasil na busca de noticias de impacto publica qualquer coisa que algum astrônomo disser sem mesmo saber se o fato é verdadeiro ou não.
Para se ter idéia da raridade de uma descoberta através de material enviado para analise, uma instituição que analisa meteoritos nos EUA afirma que de cerca de mil espécimes enviadas geralmente uma é realmente um meteorito [2]. Ou seja, encontrar um meteorito não é fácil. Muitas pessoas me enviam fotos e já perguntam qual o valor mínimo que podem receber. Antes de tentar vender alguma amostra que eventualmente tenha encontrado ainda há um longo caminho a percorrer de testes e análises.
A ideia desse artigo é apresentar algumas observações e testes simples que podem dar uma primeira indicação da origem extraterrestre de um material. Às vezes é possível ter um veredicto com alguns testes simples em outros casos somente testes mais elaborados de laboratório.
Primeiramente, gostaria de separar a análise da amostra em três fases distintas: análise preliminar, análise da superfície externa e analise da região interna:
Análise Preliminar
O material que constitui o meteorito é em geral três vezes mais denso do que uma rocha terrestre. Um siderito é constituído essencialmente de ferro! Assim o que primeiramente se nota ao segurar um meteorito é seu peso relativamente maior do que uma rocha terrestre. Cerca de 99% dos meteoritos possuem o elemento ferro em sua constituição. Mesmos os condritos ainda possuem ferro, porem em muito menor quantidade que os sideritos. Assim o primeiro teste é verificar se a amostra é atraída por um ímã. Caso a atração seja fraca ou o material seja pequeno, é possível amarrar o imã a uma cordinha e aproximar o material do ímã (não o contrário!). Se houver alguma atração será possível perceber um movimento do ímã em direção ao material. Se o material não atrair o ímã a possibilidade de amostra ser um meteorito cai muito, para quase zero, mas ainda existe. Os tipos mais raros de meteoritos como acondritos tem essa característica. Esses também são os mais valiosos!
Se o material não passar no teste do ímã a chance de ainda ser um meteorito é praticamente zero!
Se o material atrair um ímã ainda não quer dizer que o mesmo já seja um meteorito. Muitos minerais terrestres têm essa propriedade. O tipo de material que é mais confundido com meteorito é a magnetita, um minério de ferro que atraí muito um ímã (daí vem o nome). Outro mineral é a hematita, que também pode ser ou não magnético. Para diferenciar esses dois tipos de materiais de meteoritos verdadeiros são possíveis fazer testes simples como riscar o material contra uma superfície áspera. Você pode utilizar um ladrilho de cerâmica para isso utilizando a superfície não acabada da mesma (a superfície onde é colada ao piso). Risque vigorosamente a amostra contra essa superfície e observe se a mesma deixa algum rastro. Se a amostra deixar um rastro preto/cinza (como um lápis), é provável que você tenha uma magnetita. Se o risco originado tiver uma cor avermelhada ou marrom é provável que a amostra seja uma hematita.
Risco vermelho - hematita |
Risco preto-magnetita |
Análise da superfície externa
Geralmente a primeira coisa que conseguimos perceber ao tentar identificar um possível meteorito é o seu formato, cor e textura da superfície.
Quando o meteoróide (o material recebe o nome de meteorito somente após ter sobrevivido a reentrada e se encontra na superfície terrestre) faz a sua entrada na atmosfera terrestre a parte externa do mesmo sofre fusão e muito material se perde nesse processo. Em geral o aspecto externo de um meteorito, por ter sofrido essa ação na reentrada, não apresenta pontas agudas ou cavidades, pois essas teriam sido cobertas pelo material fundido. Formatos com ponta, por sua vez, também não iriam sobreviver a reentrada, pois são muito mais frágeis.
O formato externo às vezes pode também assumir aspectos aerodinâmicos logicamente originados no processo de reentrada. Devido a esse processo meteoritos não apresentam aspectos regulares como esferas ou sólidos de revolução.
Em alguns casos também é possível observar pequenas marcas na superfície chamadas de remagliptos. Essas marcas se assemelham a marcas de dedos deixadas em uma massa de vidraceiro. Esses remagliptos são originados porque a superfície do material possui pontos de fusão diferentes. Tanto meteoritos rochosos como ferrosos podem apresentar esses remagliptos, porém essas características são bem mais pronunciadas nos meteoritos ferrosos. Veja essas estruturas em meteoritos ferrosos como o Sikhote-Alin:
Remagliptos em meteorito |
Quanto à cor da superfície externa, pode haver muita variação. Um meteorito recém-caído, condrito ou siderito, vai apresentar uma crosta de fusão preta que vai se perdendo com o tempo.
A figura abaixo mostra um meteorito recém-coletado após uma queda onde a crosta preta é facilmente observada:
Borda de fusão |
Um condrito em ambiente terrestre perde a sua crosta escura que vai ficando marrom ligeiramente brilhante. Abaixo uma foto de um meteorito que já sofreu a ação do ambiente terrestre e perdeu boa parte da crosta de fusão preta. Nesses meteoritos também são observadas algumas rachaduras provenientes de dilatações e contrações contínuas ao longo do tempo.
Sem borda de fusão |
Em relação aos meteoritos ferrosos ou sideritos, a grande maioria não teve a queda presenciada e são encontrados muito tempo depois. Em geral estão enterrados e a sua superfície externa já está totalmente oxidada.
Sem borda de fusão bastante oxidado |
Com a finalidade de exibir a constituição interna de um siderito, removi toda a camada externa resultando na seguinte peça:
Meteorito sem camada externa |
Análise da região interna
A análise da região interna deve ser feita somente depois que a amostra tenha passado pela análise da superfície externa.
A região interna do meteorito é muito diferente do que se pode ver externamente. Uma análise dessa região é fundamental. Muitas pessoas que tentam analisar uma amostra não percebem essa diferença. Para os dois principais grupos de meteoritos (condritos e sideritos) vou descrever o que se espera e como se faz a análise. Em todos os casos é necessário fazer uma janela polida do material. Isso pode ser feito facilmente com uma lima e algumas lixas. Uma mini-retífica tipo dremel com um disco diamantado é muito prática para fazer essa janela. Meteoritos não possuem buracos ou vesículas em seu interior.
Condrito: Em meteoritos cuja queda foi recente o interior da amostra é claro e vai escurecendo com o tempo. Nesse tipo de meteorito o que se observa em uma janela polida do material são dois tipos de estruturas:
1) Côndrulos: Os condritos são formados por estruturas chamadas côndrulos (o nome condrito vem disso). Dependendo do tipo do meteorito esses côndrulos são mais ou menos visíveis e praticamente invisíveis em alguns casos. Uma nomenclatura de classificação de meteoritos rochosos ou condritos vem justamente dessa diferenciação dos condrulos. O tipo 3 é o que apresenta os condrulos mais definidos e consequentemente mais facilmente visualizados em uma janela polida. Segue abaixo uma foto de uma fatia do meteorito Buzzard Coulee evidenciando as estruturas chamadas côndrulos:
Condrito |
Veja abaixo uma ampliação da fatia com alguns côndrulos assinalados em vermelho:
Condrulos em detalhe |
2) Grãos de metal: Os condritos também contém uma pequena quantidade de ferro em seu interior. É por isso que um ímã também atrai a maioria dos meteoritos rochosos. Isso é facilmente visível através de uma seção polida. Onde é possível verificar a existência de pequenos grãos de ferro. Abaixo uma fatia do meteorito Lamesa (b) da minha coleção. Observe os pontos prateados no interior da seção. Esses pontos são formados de ferro e níquel!
Disseminação de liga de ferro em condrito |
Se o material em análise aparenta uma janela homogênea (sem côndrulos ou grãos metálicos) que não seja metálica, então não é um meteorito!
Siderito:
Uma janela polida de uma amostra candidata a siderito deverá apresentar um aspecto homogêneo brilhante com a cor de aço inox. Removendo a camada externa que pode ser a crosta de fusão ou uma camada oxidada o interior vai ser essencialmente ferro. Ainda é possível encontrar amostras de ferro que não são meteoritos e foram originadas em processos gerados pelo homem como em fundições (escória) ou em artefatos metálicos. Nesse caso uma análise mais profunda do material é necessária. É possível sem grandes dificuldades fazer dois tipos de análises nessa situação:
Teste de Níquel: um siderito é composto de uma liga de Ferro e Níquel. “Meteoritos” suspeitos encontrados e que possam ter origem em algum processo de origem humana dificilmente conteria níquel. Para esse teste é usado um reagente que facilmente indicará a presença de níquel. O teste de níquel pode ser feito facilmente e deveria ser obrigatório em toda analise envolvendo possíveis sideritos.
Estrutura de Widmanstätten: Também chamada de estrutura de Thomson (na verdade o descobridor), são figuras únicas de longos cristais de ferro e níquel encontrados em meteoritos ferrosos octahedritos e alguns palasitos. São constituídos pela sobreposição de bandas de tenita e kamacita (ligas com diferentes constituições de ferro e níquel). Sua formação somente pode ocorrer em ambiente extraterrestre. Para verificar se uma amostra apresenta a estrutura de Thomson, deve-se primeiramente preparar uma superfície bem polida. Após aplicar uma solução de acido nítrico e ferro chamada NITOL. A solução ácida irá atacar as ligas de ferro-niquel de maneira diferente. Parte da liga menos resistente irá ser removida com a solução ácida e alguns padrões serão formados.
Estrutura de Widmanstätten |
Resumo
Segue algumas perguntas que podem dar um forte indicativo para uma amostra em análise ser um meteorito:
1) A amostra é densa? Um meteorito é cerca de duas ou três vezes mais pesado do que uma rocha terrestre com tamanho similar.
2) A amostra é sólida e compacta?
3) A amostra é atraída por ímã? Cerca de 95% dos meteoritos são atraídos por ímã.
4) A amostra é preta ou marrom e apresenta uma superfície homogênea? A crosta de fusão de um meteorito recém-caído é escura. O ambiente terrestre irá fazer essa crosta preta ficar marrom.
5) A amostra apresenta partículas prateadas em uma superfície cortada e polida? Essas partículas são compostas de ferro e também participam da constituição dos meteoritos rochosos.
Nenhum comentário:
Postar um comentário