Seriedade e segurança, a fórmula para atrair bilhões de dólares dos investidores
Todos sabem que sem um conjunto de fatores como seriedade, obediência às
leis, segurança, estabilidade política, infraestrutura e logística
nenhum país no mundo conseguirá atrair os grandes investidores da
mineração.
São exatamente esses pontos, frequentemente esquecidos, pelos nossos
políticos em altos cargos que estão afugentando muitos mineradores do
Brasil.
O assunto foi endereçado, muito bem, por um dos maiores investidores do
setor, Robert Friedland. O bilionário diz que a África do Sul é um dos
melhores países do mundo para receber investimentos na área da
mineração. Melhor que a Austrália e Canadá. Segundo Friedland
desenvolver projetos na África do Sul é fácil, ao contrário de países
como a Mongólia onde Friedland e a Rio Tinto estão praticamente perdendo
as concessões de Oyu Tolgoi, um dos giga-depósitos de ouro e cobre
ainda não desenvolvido.
Friedland nunca mencionou o Brasil e prefere investir no Congo...onde tem um depósito de alto teor de cobre chamado Kamoa.
Assim como Friedland a maioria dos grandes investidores procuram outras
praias que não as nossas.
Quando nós brasileiros conseguiremos reverter e apagar esse estigma de
país pouco sério, que não respeita os direitos adquiridos e os contratos
já existentes?
Temos que rever os nossos conceitos e, através do voto, nunca mais eleger esses políticos que tanto fazem contra o nosso país.
No Blog Gemas Do Brasil, você encontra tudo sobre pedras preciosas, Curso de Gemologia Online, Outros cursos online na promoção e com garantia Hotmart. Garimpo de ouro, Garimpo de Diamante, Garimpo de Esmeralda, Garimpo de opala em PedroII e Feira de Pedras Preciosas no Brasil e no Mundo, enfim tudo para vc ganhar muito dinheiro com pedras preciosas, pois o Brasil é o País mais rico em Gemas.
quinta-feira, 12 de setembro de 2013
Oyu Tolgoi, uma nova estratégia
Oyu Tolgoi, uma nova estratégia
Após vários problemas entre a Rio Tinto e o Governo da Mongólia a Rio tenta uma nova rota para apaziguar os ânimos e colocar uma das maiores minas de cobre e ouro em produção máxima. A novidade se chama Craig Kinnell, o executivo que estará substituindo Cameron McRae como o CEO de Oyu Tolgoi. Kinnell terá um grande desafio de ajustar os vários pontos de atrito criados pelo seu antecessor com os representantes da Mongólia. No momento a Rio está colocando pressão na Mongólia ao congelar seus investimentos de 5 bilhões de dólares e ameaçando cortar 1.700 empregos. Caso isso venha ocorrer os prejuízos do pequeno país serão imensos.
Após vários problemas entre a Rio Tinto e o Governo da Mongólia a Rio tenta uma nova rota para apaziguar os ânimos e colocar uma das maiores minas de cobre e ouro em produção máxima. A novidade se chama Craig Kinnell, o executivo que estará substituindo Cameron McRae como o CEO de Oyu Tolgoi. Kinnell terá um grande desafio de ajustar os vários pontos de atrito criados pelo seu antecessor com os representantes da Mongólia. No momento a Rio está colocando pressão na Mongólia ao congelar seus investimentos de 5 bilhões de dólares e ameaçando cortar 1.700 empregos. Caso isso venha ocorrer os prejuízos do pequeno país serão imensos.
Uraninite
Uraninite
| Uraninite | |
|---|---|
Pitchblende from Niederschlema-Alberoda deposit, Germany
|
|
| General | |
| Category | Oxide minerals |
| Formula (repeating unit) |
Uranium dioxide or uranium(IV) oxide (UO2) |
| Strunz classification | 04.DL.05 |
| Crystal symmetry | Isometric, hexoctahedral H-M symbol: (4/m32/m) Space group: F m3m |
| Unit cell | a = 5.4682 Å; Z = 4 |
| Identification | |
| Color | Steel-black to velvet-black, brownish black, pale gray to pale green; in transmitted light, pale green, pale yellow to deep brown |
| Crystal habit | Massive, botryoidal, granular. Octahedral crystals uncommon. |
| Crystal system | Isometric |
| Cleavage | Indistinct |
| Fracture | Conchoidal to uneven |
| Mohs scale hardness | 5–6 |
| Luster | Submetallic, greasy, dull |
| Streak | Brownish black, gray, olive-green |
| Diaphaneity | Opaque; transparent in thin fragments |
| Specific gravity | 10.63–10.95; decreases on oxidation |
| Optical properties | Isotropic |
| Other characteristics | Radioactive: greater than 70 Bq/g |
| References | [1][2][3][4] |
| Major varieties | |
| Pitchblende | Massive |
All uraninite minerals contain a small amount of radium as a radioactive decay product of uranium. Uraninite also always contains small amounts of the lead isotopes 206Pb and 207Pb, the end products of the decay series of the uranium isotopes 238U and 235U respectively. Small amounts of helium are also present in uraninite as a result of alpha decay. Helium was first found on Earth in uraninite after having been discovered spectroscopically in the Sun's atmosphere. The extremely rare element technetium can be found in uraninite in very small quantities (about 0.2 ng/kg), produced by the spontaneous fission of uranium-238.
Occurrence
Uraninite crystals from Topsham, Maine (size: 2.7×2.4×1.4 cm)
Uranium ore is generally processed close to the mine into yellowcake, which is an intermediate step in the processing of uranium.
See also
References
- ^ Klein, Cornelis and Cornelius S. Hurlbut, Jr., Manual of Mineralogy, Wiley, 1985, 20th ed. pp. 307–308 ISBN 0-471-80580-7
- ^ Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W. and Nichols, Monte C. (ed.). "Uraninite" (PDF). Handbook of Mineralogy. III (Halides, Hydroxides, Oxides). Chantilly, VA, US: Mineralogical Society of America. ISBN 0-9622097-2-4. Retrieved December 5, 2011.
- ^ Uraninite. Mindat.org
- ^ Uraninite. Webmineral.com
- ^ Veselovsky, F., Ondrus, P., Gabsová, A., Hlousek, J., Vlasimsky, P., Chernyshew, I.V. (2003). "Who was who in Jáchymov mineralogy II". Journal of the Czech Geological Society (3–4 ed.) 48: 93–205.
- ^ Schüttmann, W. (1998). "Das Erzgebirge und sein Uran". RADIZ-Information 16: 13–34.
Cassiterite
Cassiterite
| Cassiterite | |
|---|---|
Cassiterite with muscovite, from Xuebaoding, Huya, Pingwu, Mianyang, Sichuan, China (size: 100 x 95 mm, 1128 g)
|
|
| General | |
| Category | Oxide minerals |
| Formula (repeating unit) |
SnO2 |
| Strunz classification | 04.DB.05 |
| Crystal symmetry | Tetragonal 4/m 2/m 2/m |
| Unit cell | a = 4.7382(4) Å, c = 3.1871(1) Å; Z=2 |
| Identification | |
| Color | Black, brownish black, reddish brown, red, yellow, gray, white; rarely colorless |
| Crystal habit | Pyramidic, prismatic, radially fibrous botryoidal crusts and concretionary masses; coarse to fine granular, massive |
| Crystal system | Tetragonal - Ditetragonal Dipyramidal 4/m 2/m 2/m |
| Twinning | Very common on {011}, as contact and penetration twins, geniculated; lamellar |
| Cleavage | {100} imperfect, {110} indistinct; partings on {111} or {011} |
| Fracture | Subconchoidal to uneven |
| Tenacity | Brittle |
| Mohs scale hardness | 6–7 |
| Luster | Adamantine to adamantine metallic, splendent; may be greasy on fractures |
| Streak | White to brownish |
| Diaphaneity | Transparent when light colored, dark material nearly opaque; commonly zoned |
| Specific gravity | 6.98 - 7.1 |
| Optical properties | Uniaxial (+) |
| Refractive index | nω = 1.990 - 2.010 nε = 2.093 - 2.100 |
| Birefringence | δ = 0.103 |
| Pleochroism | Pleochroic haloes have been observed. Dichroic in yellow, green, red, brown, usually weak, or absent, but strong at times |
| Fusibility | infusible |
| Solubility | insoluble |
| References | [1][2][3][4] |
Occurrence
Most sources of cassiterite today are found in alluvial or placer deposits containing the resistant weathered grains. The best sources of primary cassiterite are found in the tin mines of Bolivia, where it is found in hydrothermal veins. Rwanda has a nascent cassiterite mining industry. Fighting over cassiterite deposits (particularly in Walikale) is a major cause of the conflict waged in eastern parts of the Democratic Republic of the Congo.[5][6]Cassiterite is a widespread minor constituent of igneous rocks. The Bolivian veins and the old exhausted workings of Cornwall, England, are concentrated in high temperature quartz veins and pegmatites associated with granitic intrusives. The veins commonly contain tourmaline, topaz, fluorite, apatite, wolframite, molybdenite, and arsenopyrite. The mineral occurs extensively in Cornwall as surface deposits on Bodmin Moor, for example, where there are extensive traces of an hydraulic mining method known as streaming. The current major tin production comes from placer or alluvial deposits in Malaysia, Thailand, Indonesia, the Maakhir region of Somalia, and Russia. Hydraulic mining methods are used to concentrate mined ore, a process which relies on the high specific gravity of the SnO2 ore, of about 7.0.
Crystallography
Crystal twinning is common in cassiterite and most aggregate specimens show crystal twins. The typical twin is bent at a near-60-degree angle, forming an "elbow twin". Botryoidal or reniform cassiterite is called wood tin.Cassiterite is also used as a gemstone and collector specimens when quality crystals are found.
Etymology
The name derives from the Greek kassiteros for "tin"—or from the Phoenician word Cassiterid referring to the islands of Ireland and Britain, the ancient sources of tin—or, as Roman Ghirshman (1954) suggests, from the region of the Kassites, an ancient people in west and central Iran.References
- ^ a b Handbook of Mineralogy
- ^ Mindat
- ^ Webmineral
- ^ Hurlbut, Cornelius S.; Klein, Cornelis (1985). Manual of Mineralogy (20th ed.). New York: John Wiley and Sons. pp. 306–307. ISBN 0-471-80580-7.
- ^ Watt, Louise (2008-11-01). "Mining for minerals fuels Congo conflict". Yahoo News! (Yahoo! Inc). Associated Press. Retrieved 2009-09-03.
- ^ Polgreen, Lydia (2008-11-16). "Congo's Riches, Looted by Renegade Troops". New York Times. Retrieved 2008-11-16.
Stalactitic-botryoidal, banded, "wood tin" cassiterite, 5.0 x 4.9 x 3.3 cm, Durango, Mexico
Chromite
Chromite
| Chromite | |
|---|---|
| General | |
| Category | Oxide minerals Spinel group Spinel structural group |
| Formula (repeating unit) |
(Fe, Mg)Cr2O4 |
| Strunz classification | 04.BB.05 |
| Crystal symmetry | Isometric hexoctahedral H-M symbol: (4/m3 2/m) Space group: F d3m |
| Unit cell | a = 8.344 Å; Z = 8 |
| Identification | |
| Color | Black to brownish black; brown to brownish black on thin edges in transmitted light |
| Crystal habit | Octahedral rare; massive to granular |
| Crystal system | Isometric |
| Twinning | Spinel law on {1ll} |
| Cleavage | None, parting may develop along {111} |
| Fracture | Uneven |
| Tenacity | Brittle |
| Mohs scale hardness | 5.5 |
| Luster | Submetallic |
| Streak | Brown |
| Diaphaneity | Translucent to opaque. |
| Specific gravity | 4.5 - 4.8 |
| Optical properties | Isotropic |
| Refractive index | n = 2.08-2.16 |
| Other characteristics | Weakly magnetic |
| References | [1][2][3][4] |
This article is about the mineral. For the chromium(III) anion and its salts, see Chromite (compound).
Chromite is an iron chromium oxide: FeCr2O4. It is an oxide mineral belonging to the spinel group. Magnesium can substitute for iron in variable amounts as it forms a solid solution with magnesiochromite (MgCr2O4);[5] substitution of aluminium occurs leading to hercynite (FeAl2O4).[6]It is an industrially important mineral for the production of metallic chromium, used as an alloying ingredient in stainless and tool steels.
Occurrence
A chromite prospect in Yukon. The black bands are chromite, which also carries platinum group metals. Gray rock is bleached ultramafics.
Usage
The only ores of chromium are the minerals chromite and magnesiochromite. Most of the time, economic geology names chromite the whole chromite-magnesiochromite series: FeCr2O4, (Fe,Mg)Cr2O4, (Mg,Fe)Cr2O4 and MgCr2O4.[4] The two main products of chromite refining are ferrochromium and metallic chromium; for those products the ore smelter process differs considerably. For the production of ferrochromium the chromite ore (FeCr2O4) is reduced with either aluminium or silicon in an aluminothermic reaction and for the production of pure chromium the iron has to be separated from the chromium in a two step roasting and leaching process.[9]Chromite is also used as a refractory material, because it has a high heat stability.[10]
Mining
In 2002 14,600,000 metric tons of chromite were mined. The largest producers were South Africa (44%) India (18%),[11] Kazakhstan (16%) Zimbabwe (5%), Finland (4%) Iran (4%) and Brazil (2%) with several other countries producing the rest of less than 10% of the world production.[12][13]Minor production
Afghanistan has significant deposits of high grade chromite ore, which is mined illegally in Khost Province and then smuggled out of the country.[14]In Pakistan, chromite is mined from the ultramafic rocks in mainly the khanozai area of Pishine District of Balochistan. Most of the chromite is of metallurgical grade with Cr2O3 averaging 54% and a chrome to iron ratio of 2.6:1.
Recently, the biggest user of chromite ore has been China, importing large quantities from South Africa, Pakistan and other countries. The concentrate is used to make ferrochromium, which is in turn used to make stainless steel and some other alloys.[15]
In April 2010 the Government of Ontario announced[16] that they would be opening up a large chromite deposit to development in the northern part of Ontario known as the Ring of Fire.
Australia has a single working chromite mine in the Pilbara region of Western Australia, near the Indigenous community of Jigalong. The mine produces high grade lump chromite in the region of 300,000 tonnes per year.
References
- Jump up ^ http://www.handbookofmineralogy.com/pdfs/chromite.pdf Handbook of Mineralogy
- ^ Jump up to: a b Klein, Corneis and Cornelius S. Hurlbut, Manual of Mineralogy, Wiley, 20th ed., pp. 312-313 ISBN 0-471-80580-7
- Jump up ^ http://webmineral.com/data/Chromite.shtml Webmineral data
- ^ Jump up to: a b http://www.mindat.org/min-1036.html Mindat.org
- Jump up ^ http://www.mindat.org/min-8675.html Mindat
- Jump up ^ http://www.mindat.org/min-8674.html Mindat
- Jump up ^ Gu, F; Wills, B (1988). "Chromite- mineralogy and processing". Minerals Engineering 1 (3): 235. doi:10.1016/0892-6875(88)90045-3.
- Jump up ^ Guilbert, John M., and Park, Charles F., Jr. (1986) The Geology of Ore Deposits, Freeman, ISBN 0-7167-1456-6
- Jump up ^ Papp, John F.; Lipin Bruce R. (2006). "Chromite". Industrial Minerals & Rocks: Commodities, Markets, and Uses (7th ed.). SME. ISBN 978-0-87335-233-8.
- Jump up ^ Routschka, Gerald (2008). Pocket Manual Refractory Materials: Structure - Properties - Verification. Vulkan-Verlag. ISBN 978-3-8027-3158-7.
- Jump up ^ "Chromites of India".
- Jump up ^ Papp, John F. "Mineral Commodity Summary 2006: Chromium". United States Geological Survey. Retrieved 2009-02-24.
- Jump up ^ Papp, John F. "Minerals Yearbook 2006: Chromium". United States Geological Survey. Retrieved 2009-02-24.
- Jump up ^ http://www.nytimes.com/2012/09/09/world/asia/afghans-wary-as-efforts-pick-up-to-tap-mineral-riches.html?_r=1&nl=todaysheadlines&emc=edit_th_20120909
- Jump up ^ "How Products are Made, Vol. 1". Retrieved 29 Dec., 2010.
- Jump up ^ "YouTube - premierofontario's Channel". Youtube. Retrieved 2010-04-13.
Assinar:
Comentários (Atom)