sábado, 28 de janeiro de 2017

Americana encontra diamante de três quilates em parque estadual

Americana encontra diamante de três quilates em parque estadual

Diamante Dorie ao lado de uma moeda  (foto: Departamento de Parques e Turismo do Arkansas)
O Diamante Dorie ao lado de uma moeda do Estado do Arkansas
Autoridades do Estado americano do Arkansas informaram que uma mulher de Pittsburgh, Pensilvânia, encontrou um diamante de mais de três quilates durante uma visita a um parque estadual.
De acordo com informações do Departamento de Parques e Turismo do Arkansas, Patti Kubli achou a pedra preciosa durante uma visita ao Parque Estadual Crater of Diamonds (Cratera de Diamantes, em tradução livre), na semana passada.
Kubli disse às autoridades que, depois de chegar ao parque junto com sua irmã, as duas começaram a procurar pedras em uma área destinada aos visitantes que queiram tentar encontrar diamantes no parque. Depois de cerca de meia hora, Kubli viu a pedra de 3,17 quilates, um diamante amarelo.
"Estava faiscando. Eu vi (a pedra) brilhando em cima da terra", disse. Kubli batizou a pedra de Diamante Dorie, em homenagem à sua mãe.
A ideia da visita foi do irmão de Kubli, que estudou geologia e descobriu a respeito do parque do Arkansas em uma pesquisa pela internet. Ele, no entanto, não viajou junto com as irmãs.
"Nossa, ele vai ficar mal", disse Kubli, de acordo com a página do Departamento de Parques e Turismo do Arkansas.
De acordo com Margi Jenks, que trabalha no parque estadual, o diamante encontrado por Kubli é de um "amarelo canário intenso, extremamente brilhante", do tamanho de um confeito, "sua forma lembra vagamente uma pêra".
"É um dos diamantes mais belos que já vi. Você pode enxergá-lo de longe. Fiquei muito impressionada", disse.
Descobertas diárias
Segundo Jenks são encontrados, em média, dois diamantes por dia no parque estadual. A pedra encontrada por Kubli foi a 108ª achada no parque apenas em 2010.
Patti Kubli (dir.) e sua irmã com o Diamante Dorie (foto: Departamento de Parques e Turismo do Arkansas)
Patti Kubli (dir.) e sua irmã exibem o Diamante Dorie
Este último diamante é o maior encontrado no parque desde a descoberta de uma pedra de 3,02 quilates em novembro de 2009. Em abril de 2009, um outro diamante, de 5,75 quilates e batizado de Cavaleiro Árabe, foi encontrado no parque.
O Parque Estadual Crater of Diamonds é o único parque do mundo com uma mina de diamantes aberta ao público e os funcionários reviram a terra periodicamente para trazer os diamantes e outras pedras preciosas para a superfície.
Os diamantes mais comuns encontrados no local são os brancos, marrons e amarelos. Além de diamantes, já foram encontradas ametistas, ágatas e cristais de quartzo no local.
Os visitantes podem ficar com as pedras que encontrem na área do parque, que tem mais de 150 mil metros quadrados.
O parque fornece identificação e certificados grátis para as pedras encontradas pelos visitantes.
Mais de 75 mil diamantes foram encontrados no parque do Estado do Arkansas desde a primeira descoberta, registrada em 1906.

Os kimberlitos são a mais importante fonte de diamantes

O kimberlito é uma rocha ígnea intrusiva, um peridotito composto por olivina (normalmente serpentinizada) com quantidades variáveis de flogopita, ortopiroxênio, clinopiroxênio, carbonatos e cromita.
Os kimberlitos são a mais importante fonte de diamantes, porém sua existência só se tornou conhecida no ano de 1866. Os depósitos da região de Kimberley na África do Sul foram os primeiros reconhecidos e deram origem ao nome. Os diamantes de Kimberley foram encontrados originalmente em kimberlito laterizado. Classifica-se grosseiramente, em função das características do kimberlito de Kimberley o kimberlito como sendo “yellow ground” e “blue ground”. Yellow ground é relativo ao kimberlito intemperizado que se encontra na superfície. Blue ground é relativo ao kimberlito não intemperizado, encontrado em profundidades variáveis.
O kimberlito ocorre principalmente nas zonas de crátons, porções da crosta terrestre estáveis desde o período Pré-Cambriano. No Brasil existem três áreas cratônicas. O cráton Amazônico é a principal delas, porém ao sul de Rondônia e norte do Mato Grosso também encontra-se kimberlitos. O cráton do São Francisco ocupa grande parte de Minas Gerais e destaca-se na região sudeste do Brasil, porém nele, com exceção dos kimberlitos pobres da Serra da Canastra, não se conhecem rochas kimberlíticas mineralizadas.
Página 5
2 - MORFOLOGIA
Os kimberlitos são um grupo de rochas ultrabásicas ricas em voláteis (principalmente dióxido de carbono). Normalmente apresentam textura inequigranular característica, resultando na presença de macro-cristalizações inseridas em uma matriz de grãos finos. A montagem destas macro-cristalizações consistem em cristais anédricos de ilmenita magnesiana, piropo titaniano pobre em cromo, olivina, clinopiroxênio pobre em cromo, flogopita, enstatita e cromita pobre em titânio, sendo que a olivina é o membro dominante. Os minerais da matriz incluem olivina e/ou flogopita juntamente com perovskita, espinélio, diopsídio, monticellita, apatita, calcita e serpentina.
Alguns kimberlitos contém flogopita-estonita poiquilítica em estágio avançado.
Sulfetos de níquel e rutilo são minerais acessórios comuns. A substituição de olivina, flogopita, monticellita e apatita por serpetina e calcita é comum.
Membros desenvolvidos do grupo do kimberlito podem ser pobres ou desprovidos de macro-cristalizações e compostos essencialmente de calcita, serpentina e magnetita juntamente com flogopita, apatita e perovskita, os últimos em menor quantidade.
Segundo Kopylova (2005), em referência a Clement e Skinner (1985), o kimberlito pode ser dividido em três unidades, baseadas em sua morfologia e petrologia:
2.1 - KIMBERLITO DE CRATERAS
A morfologia de superfície de kimberlitos intemperizados é caracterizada por uma cratera de até dois quilômetros de diâmetro cujo piso pode estar a centenas de metros abaixo da superfície. A cratera é geralmente mais profunda no meio. No entorno da cratera há um anel de tufa relativamente pequeno (em geral com menos de 30 metros) quando comparado com o diâmetro da cratera. Duas categorias principais de rochas são encontradas em kimberlitos de crateras: piroclásticas, depositadas por forças eruptivas e epiclásticas, retrabalhadas por água.
Rochas Piroclásticas: Encontradas preservadas em anéis de tufa no entorno da cratera ou dentro da cratera. Os anéis possuem pequena relação altura por diâmetro da cratera e são preservados em muito poucos kimberlitos. Os únicos locais com anéis de tufa bem preservados no mundo são Igwisi Hills na Tanzânia e Kasami em Mali. Os depósitos são normalmente acamados, vesiculares e carbonizados.
Rochas Epiclásticas: Estes sedimentos representam retrabalho fluvial no material piroclástico do anel de tufa no lago formado no topo da diatrema. Apresentam-se dispersas quanto mais afastadas do centro e das paredes rochosas.
Considerando a raridade de kimberlitos de crateras é difícil desenvolver um modelo para determinar com certeza que todos os kimberlitos serão conformados segundo as características observadas acima.
Página 6
2.2 – KIMBERLITO DE DIATREMAS
Diatremas kimberlíticas possuem de 1 a 2 quilômetros de profundidade e geralmente apresentam-se como corpos cônicos que são circulares ou elípticos na superfície e afinam com a profundidade. O contato com a rocha hospedeira é dado usualmente entre 80 e 85 graus. A zona é caracterizada por material kimberlítico vulcanoclástico fragmentado e xenólitos agregados de vários níveis da crosta terrestre durante a subida do kimberlito à superfície.
2.3 – KIMBERLITO ABISSAL
Estas rochas são formadas pela cristalização de magma kimberlítico quente e rico e voláteis. Geralmente não possuem fragmentação e parecem ígneos.
São notáveis as segregações de calcita-serpentina e as segregações globulares de kimberlito em uma matriz rica em carbonato.
Página 7
3 – MODELOS DE CLASSIFICAÇÃO DE KIMBERLITOS
Vários modelos de classificação foram desenvolvidos para os kimberlitos e as grandes variações de textura e mineralogia apresentadas por estas rochas implicam em dificuldades para classificá-los. O modelo mais conhecido e geralmente bem aceito foi proposto por Clement e Skinner (1985). Esta classificação é largamente utilizada, no entanto é importante notar aqui as implicações genéticas neste modelo. O termo “tufisítico” significa presumir que o kimberlito foi formado através de processo de fluidização, porém ainda existem controvérsias com relação à formação dos kimberlitos.
Classificação dos Kimberlitos
De Clement e Skinner 1985 Crater-Facies
Página 8
As subdivisões das fácies principais são determinadas por diferenças na textura. As características diferenciadoras podem ser resumidas:
Kimberlitos de crateras são reconhecidos por características sedimentares. Kimberlitos de diatremas são reconhecidas por formações geodésicas do magma cristalizado e formações semelhantes geradas durante a perda dos gases.
Kimberlitos abissais são comumente reconhecidos pela presença abundante de calcita e textura segregada com macro/mega-cristalizações.
A divisão entre “breccia” e “não breccia” (coluna dois – Tipo de Rocha) denomina rochas fragmentadas e é comumente aportuguesada do italiano pelo termo “brecha”. A denominação aqui é baseada no volume percentual dos fragmentos visíveis macroscopicamente. Qualquer rocha com mais de 15% do volume de fragmentos visíveis é denominada “breccia”. Fragmentos podem ser acidentados ou cognatos. As subdivisões da terceira coluna envolvem características específicas discutidas em detalhes por Clement e Skinner, 1985, mas que fogem do escopo deste texto. Vale ressaltar que não existem classificações inteiramente aceitas para o kimberlito. O diagrama proposto por Clement e Skinner é o mais comumente aceito utilizado e por isto é apresentado aqui.
Página 9
4 - MODELOS DE FORMAÇÃO DO KIMBERLITO
Desde a descoberta de diamantes em kimberlito muitas teorias surgiram a respeito do processo de formação desta rocha. Mitchell (1986) apresenta em detalhes as diferentes teorias. Destas, serão apresentadas as três mais conhecidas e discutidas.
4.1 – TEORIA DO VULCANISMO EXPLOSIVO
Esta teoria envolve o apontamento de magma kimberlítico em baixas profundidades e o subseqüente acúmulo de voláteis. Quando a pressão confinada é suficiente para romper a rocha superior segue-se uma erupção. Acreditava-se que epicentro da erupção encontravase no contato da fácie abissal com a diatrema.
Através da extensiva atividade mineradora desenvolvida nas regiões kimberlíticas tornou-se claro que esta teoria não é sustentável. Não foi encontrada nenhuma câmara intermediária nas profundidades sugeridas. Além disso o ângulo de mergulho da grande maioria é muito alto (80-85 graus) para ter sido formado em tais profundidades, ou seja, a relação entre o raio na superfície e a profundidade é muito pequena. Fácies de transição entre diatremas e fácies abissais têm cerca de 2km de profundidade, enquanto crateras têm geralmente cerca de 1km de largura, perfazendo assim uma taxa de 1:2. Estudos do ponto original das explosões revelaram que a taxa deveria estar perto de 1:1.
4.2 – TEORIA MAGMÁTICA (FLUIDIZAÇÃO)
Segundo Kopylova, a proposição original desta teoria foi feita por Dawson (1962,
1971). Subseqüentemente foi desenvolvida por Clement (1982) e vem sendo estudada atualmente por Field e Scott Smith (1999).
Em termos gerais a teoria aponta que o magma kimberlítico sobe à superfície em diferentes pulsos, formando o que é denominado de “embryonic pipes” (chaminés embrionárias; Mitchell, 1986). O resultado é uma rede complexa de chaminés embrionárias sobrepostas de fácies abissais de kimberlito. A superfície não é rompida e os voláteis não escapam. Um algum ponto as chaminés embrionárias alcançam uma profundidade rasa o suficiente (cerca de 500 metros) na qual a pressão dos voláteis é capaz de vencer o peso da rocha que o recobre e os voláteis escapam. Com a fuga dos voláteis um breve período de fluidização ocorre. Isto envolve o movimento ascendente dos voláteis, que é suficientemente rápido para “fluidizar” o kimberlito e a rocha hospedeira fragmentada de modo que as partículas são carregadas em um meio sólido-líquido-gasoso. Fragmentos da rocha encaixante que se encontrem neste sistema fluidizado podem afundar dependendo de sua densidade. A fronte fluidizada move-se descendentemente a partir da profundidade inicial. Acredita-se que a fluidização seja muito breve pois os fragmentos normalmente são angulares.
Página 10
Desenvolvimento da Chaminé Embrionária
De Mitchell 1986
Esta teoria supostamente explica as características observadas em chaminés kimberlíticas tais como: fragmentos de rocha encaixante encontrados até 1km abaixo do nível estratigráfico através de fluidização; chaminés íngremes com ângulos de ~80-85 graus, dado que a explosão inicial acontece a profundidades relativamente baixas; Rede complexa de chaminés de fácies abismais encontradas em profundidade; a transição de fácies abismais para fácies de diatremas.
Descobertas recentes de chaminés de kimberlitos em Fort a la Corne no Canadá sugerem uma re-avaliação da teoria magmática. Field e Scott Smith não negam que a água pode desempenhar um papel na vasta variedade de chaminés de kimberlitos obervados. Eles acreditam que em alguns casos os magmas kimberlíticos possam entrar em contato com aqüíferos e neste caso a morfologia resultante será significantemente diferente das chaminés encontradas em outros lugares, particularmente na África do Sul. Eles consideram que a
Página 1 configuração geológica em que o kimberlito está inserido desempenha um papel significante na sua morfologia. Rochas bem consolidadas, que são aqüíferos pobres, tais como basaltos, que cobrem a maior parte da África do Sul, promovem a formação de chaminés muito inclinadas com 3 fácies kimberlíticas distintas. Sedimentos mal consolidados são excelentes aqüíferos e podem promover a formação de chaminés com ângulo de mergulho suave, o quais são preenchidos com kimberlitos de crateras, enquanto existe ausência de kimberlitos de diatremas.
A figura abaixo é baseada no esquema montado por Field e Scott Smith 1998. De especial interesse é a morfologia da chaminé de kimberlitos de Fort a la Corne em Saskatchewan no Canadá. As paredes da chaminé possuem mergulho especialmente raso e são preenchidas com rochas vulcanoclásticas ou sedimentos das fácies da cratera. A geologia local apresenta sedimentos pouco consolidados. Field e Scott Smith atribuem a diferença na morfologia observada nas chaminés de Saskatchewan ao hidrovulcanismo.

A intrusão diamantífera Abel Régis (Carmo do Paranaíba, MG): kimberlito ou lamproíto?

Resumo
Centenas de intrusões de natureza kimberlítica ou relacionadas são conhecidas na Província Diamantífera do Alto Paranaíba, em Minas Gerais e Goiás. O pipe Abel Régis, localizado em Carmo do Paranaíba e descoberto pela De Beers na década de 1970, é um desses corpos, que tem sido, em geral, considerado como um kimberlito. Na área da intrusão, ocorrem metassedimentos neoproterozóicos do Grupo Bambuí, os quais são atravessados pelo pipe cretácico (?) de forma superficial aproximadamente circular, com cerca de 1.400 m de diâmetro. Foram distinguidas diversas fácies petrográficas no corpo, que é um dos poucos de toda a província mineral onde encontram-se preservadas feições da zona de cratera. Como o acervo de informações pré-existentes não era esclarecedor quanto à mineralogia de tal corpo, efetuaram-se também estudos com microssonda eletrônica, os quais demonstraram significativas mudanças quanto ao até então admitido. As mais importantes foram: predomínio local de Cr-espinélio sobre ilmenita entre os minerais indicadores, ilmenitas pouco magnesianas e presença abundante do K-feldspato sanidina. Essas características, somadas ao aspecto em forma de taça apresentado pelo corpo, permitem sugerir, em princípio, que a intrusão Abel Régis possa ser de natureza lamproítica.
1. Introdução
Na atualidade, centenas de intrusões de natureza kimberlítica ou parentais são conhecidas na Província Diamantífera do Alto Paranaíba, em Minas Gerais e regiões contíguas de Goiás, especialmente na faixa NW-SE, que abrange os municípios mineiros de Monte Carmelo, Abadia dos Dourados, Coromandel, Patos de Minas e Carmo do Paranaíba. Embora depósitos diamantíferos aluvionares tenham sido descobertos no país nos primórdios do século XVIII, somente no final da década de 1960 iniciou-se a pesquisa sistemática de rochas fontes primárias pelo BRGM, órgão estatal francês de mineração. Através de sua subsidiária brasileira, a SOPEMI (mais tarde encampada pelo grupo minerador sul-africano De Beers), essa empresa identificou os primeiros pipes kimberlíticos na bacia do Rio Santo Inácio, em Coromandel, onde depósitos secundários eram lavrados desde inícios do século XX.
Na Província do Alto Paranaíba, logo dezenas de outros corpos foram identificados e pesquisados. Além disso, uma outra província diamantífera foi descoberta pela SOPEMI, cerca de 200 km a sudeste da anterior, designada de Província da Serra da Canastra. Tais pesquisas levaram à definição de alguns pipes mineralizados a baixo teor, bem como ao primeiro depósito primário no país com reservas economicamente viáveis, o kimberlito Canastra-1 (Chaves et al., 2008). A Província do Alto Paranaíba abrange uma superfície com pelo menos 30.000 km². Nesse contexto, em diversos corpos onde a mineralização foi anunciada, os seus potenciais econômicos permanecem de conhecimento exclusivo das companhias portadoras dos direitos minerários, e, assim, o relacionamento entre as intrusões com os diamantes aluvionares ainda não está perfeitamente estabelecido na região como um todo.
O "kimberlito" Abel Régis constitui um desses casos. Ele foi descoberto na década de 1970 e, do mesmo modo que a maioria das intrusões da região, foi classificado como um kimberlito (Read et al., 2004; La Terra, 2006; La Terra et al., 2006), embora esses trabalhos careçam de dados geoquímicos e/ou mineralógicos pertinentes. Informações adicionais obtidas em campo revelam ainda que o corpo tem produzido regularmente microdiamantes, amostrados com o programa de sondagens efetuado (Geólogo Ricardo Prates, inf. verbal, 2007). Através do levantamento detalhado do corpo (1:5.000), que determinou sua geologia e as fácies petrográficas típicas, bem como amostragem dos principais minerais indicadores visando a detectar aspectos mineraloquímicos em análises com microssonda eletrônica, observou-se que as pesquisas anteriores foram insatisfatórias na caracterização da tipologia da rocha, levando a uma proposta de redefinição da mesma no presente artigo.

2. Localização, breve histórico e síntese geológica
A intrusão está localizada cerca de 12 km WNW da sede da cidade de Carmo do Paranaíba, meio-oeste de Minas Gerais. O centróide aproximado do corpo está em (GPS) 349400N/7901500E, zona 23 e datum Córrego Alegre (Figura 1). Na década de 1970, quando a SOPEMI (Grupo De Beers) descobriu alguns de seus afloramentos através de rastreamento de minerais indicadores e prospecção geofísica por magnetometria, eles foram designados como Abel Régis, Sucesso-1 e Sucesso-2, admitindo-se, na ocasião, a existência de três blows independentes. O primeiro nome foi tirado do proprietário da fazenda, cuja sede localiza-se no interior da intrusão.
Novas pesquisas efetuadas pela Parimá Mineração, na década de 1990, rebatizaram tais blows como Régis-1, Régis-2 e Régis-3; os dois primeiros recentemente integrados em um só corpo (Régis) pela SAMSUL Mineração a partir de dados aerogeofísicos. Essa última etapa de pesquisas incluiu seis furos de sonda rotativa, dois deles (na porção central da intrusão) recuperando microdiamantes (MD): um com 316 m de profundidade amostrou 129 MD e outro, com 251 m, amostrou 20 MD (Geólogo Ricardo Prates, inf. verbal, 2007). Doravante, a intrusão será designada conforme sua caracterização original pela SOPEMI - "Abel Régis'.
A geologia da região compreende principalmente siltitos, argilitos e diamictitos do Grupo Bambuí, de idade neoproterozóica, nos quais a intrusão encontra-se na maior parte hospedada (Seer et al., 1989; Signorelli et al., 2003; Tuller & Silva, 2003). Sobre o Grupo Bambuí, ocorrem arenitos e conglomerados do Grupo Areado (Cretáceo Inferior) além de rochas tufáceas do Grupo Mata da Corda (Cretáceo Superior). Em termos geotectônicos, o pipe está localizado nas proximidades da margem oeste do Cráton do São Francisco (Figura 1); inexistem datações divulgadas sobre o mesmo, embora outros situados nessa província diamantífera sejam datados no Eocretáceo (Svisero et al., 1983; Pereira & Fuck, 2005).

3. Aspectos geológicos da intrusão Abel Régis
A intrusão possui forma superficial aproximadamente circular com cerca de 1.400 m de diâmetro (±140 ha de área), conforme o levantamento em escala de detalhe efetuado (Figura 2). La Terra (2006) e La Terra et al. (2006) determinaram com metodologia CSAMT (controlled-source audiomagnetotellurics) o comportamento em subsuperfície do corpo, constituindo uma das raras intrusões dessa natureza no país que já foram pesquisadas com tal detalhe, tendo seus resultados divulgados. Através de duas perfilagens N-S e uma perfilagem E-W (posição dos perfis na Figura 2), obteve-se um modelamento em duas dimensões para o pipe até cerca de 300 m de profundidade (Figura 3-A), onde se configura a aparente presença de somente um conduto vulcânico. Pela comparação das formas típicas de pipes kimberlíticos e lamproíticos (Figura 3-B e C), denota-se uma forte semelhança morfológica com o segundo tipo litológico.




Embora a maioria dos afloramentos encontre-se em adiantado estado de intemperização, foram identificadas quatro fácies petrográficas (Figura 2): (1) A fácies dominante, presente em cerca de 60% da exposição e de modo característico em suas bordas, consiste em uma brecha vulcânica compacta e pouco selecionada; (2) Localizada preferencialmente na porção centro-sul da intrusão, possuindo em torno de 30% de expressão areal, aparece uma fácies de tufos, finos até grossos, argilitizados e ricos em minerais indicadores; (3) Uma terceira fácies, de brecha grossa, é observada no bordo oeste e sudoeste do corpo, com cerca de 8% de domínio de superfície, constituindo uma zona com abundância de xenólitos crustais (principalmente quartzito e metassiltito), com blocos de material silexficado (parede da intrusão?) dispersos na superfície; (4) De ocorrência restrita a pequeno setor ao norte da intrusão (~2% de expressão areal) ocorre uma fácies de tufo acamadado, com material piroclástico (lapilli) associado.
A intrusão é uma das poucas de toda província onde ainda encontram-se preservadas feições da zona de cratera. O conduto superior de uma intrusão é de difícil preservação, por apresentar composição de material tufáceo ultrabásico que sob condições exógenas é rapidamente erodido. As crateras exibem estrutura em funil resultante de seu colapso, preenchida por sedimentos estratificados, remobilizados do próprio pipe.

4. Mineraloquímica das principais fases indicadoras
Amostragens para caracterização da mineraloquímica das mais importantes fases indicadoras do diamante foram efetuadas em três locais, duas sobre a fácies da brecha de borda e uma sobre a fácies de tufos (central), compreendendo 30 kg em cada ponto (Figura 2). Para o procedimento de coleta desses minerais, foi dada preferência aos trechos de miniravinamento sobre o corpo, onde o fator de concentração dos pesados deve chegar a pelo menos 10 vezes o da rocha, pela simples observação visual. Análises com microssonda eletrônica foram efetuadas sobre granadas, diopsídio, ilmenita e espinélio (LMA - Dep. de Física/ICEX-UFMG). No total, analisaram-se 128 grãos; em cada grão foram realizados 4 pontos de medição.
As granadas, todas identificadas do tipo piropo, foram separadas segundo distintas colorações: púrpura (29 grãos), vermelha (28 grãos) e alaranjada (21 grãos). Em geral, os dados químicos mostraram-se bastante semelhantes entre esses três tipos, não se verificando relação entre granadas de cor púrpura com maior concentração de Cr2O3, como recentemente Chaves et al. (2008) reconheceram no kimberlito Canastra-1 (São Roque de Minas).
As composições CaO x Cr2O3, para separação entre granadas de diferentes tendências químicas são apresentadas na Figura 4, onde se destaca uma população fortemente concentrada no trend G4-G5-G9 (campos mineraloquímicos conforme Grütter et al., 2004). Esses campos, em geral, caracterizam intrusões com teores desprezíveis ou inférteis em diamantes (Dawson & Stephens, 1975; Grütter et al., 2004).


Segundo Mitchell e Bergman (1991), as composições dos clinopiroxênios não servem para diferenciar claramente kimberlitos do grupo II de lamproítos. Entretanto Mitchell (1986) fornece uma tabela com duas médias de composições de diopsídios derivados de kimberlitos do grupo II, com conteúdos de CaO por volta de 25% (Tabela 1), muito diferentes das médias encontradas na intrusão Abel Régis e, por exemplo, no lamproíto "clássico" de Leucite Hills (EUA). Ressaltem-se, ainda, os conteúdos de Cr2O3 desse mineral na intrusão estudada, bastante elevados, seja para lamproítos, seja para kimberlitos do grupo II.
Um outro aspecto mineralógico interessante diz respeito à relativa maior abundância de Cr-espinélio (cromita) sobre ilmenita na fácies de tufos, de ocorrência incomum em kimberlitos (Mitchell, 1986). Normalmente, espinélios de kimberlitos e lamproítos seguem dois trends mineraloquímicos distintos, ambos representados nas amostras do corpo Abel Régis (Tabela 2). Cromitas associadas com diamante possuem altos conteúdos de Cr2O3 e MgO, respectivamente maiores do que 62% e 12% em média, além de depleção em TiO2 (Dong & Zhou, 1980; Gurney & Moore, 1991). Dois grãos analisados do mineral revelaram tais características, sendo fortes evidências de material de manto superior, provavelmente relacionados com a presença de (micro) diamantes.
As ilmenitas de kimberlitos, em geral, possuem um característico alto conteúdo de MgO, que pode alcançar até próximo de 25% (Mitchell, 1986), enquanto as de lamproítos tendem a apresentar valores mais baixos desse óxido (Mitchell & Bergman, 1991). A média de ±7,5% reconhecida na intrusão Abel Régis, compara-se à de lamproítos australianos (Tabela 3). Em adição, observam-se, também, nessa tabela, as semelhanças notáveis dos valores de FeO e MgO do mineral em lamproítos em comparação aos dados analisados no corpo Abel Régis.
Nos três pontos amostrados, observaram-se, com relativa abundância, grãos (com até cerca de 1 mm de diâmetro) de um mineral esbranquiçado-leitoso, de forma esférica ou semi-esférica, identificado com difração de raios X como sanidina. Esse mineral, analisado posteriormente com microssonda eletrônica (ponto REG), apresentou semelhança química muito forte com espécimes descritos nos lamproítos de Leucite Hills (EUA), Kapamba (Zâmbia) e West Kimberley (Austrália) (Tabela 4).
O zircão foi observado sobretudo no ponto SUC, identificado através de análises com EDS. Apresenta-se em prismas tabulares euédricos a subédricos, de coloração incolor-amarelada, sendo que o maior cristal encontrado alcançou o notável comprimento de 0,5 cm.

5. Discussões sobre a morfologia do corpo e sua química mineral
Algumas considerações devem ser destacadas sobre a intrusão Abel Régis:
  • Sua forma muito alargada em superfície, com cerca de 1,4 km de diâmetro, é contrária à da grande maioria dos kimberlitos da mesma região (p. ex., Svisero et al., 1983, 1986; Pasin, 2003; Chaves, 2008; Chaves et al., 2008).
  • Seu curto espaço de afunilamento em subsuperfície, demonstrado pela modelagem geofísica, permite o reconhecimento de uma forma típica "de taça".
  • A relativa abundância de espinélio sobre ilmenita; o primeiro mineral é um indicador somente acessório na maioria dos kimberlitos.
  • A mineraloquímica dos indicadores, notadamente diopsídio e ilmenita, de grande semelhança com espécimes já descritos em lamproítos.
  • A presença do K-feldspato sanidina. Intrusões kimberlíticas são notoriamente pobres em minerais potássicos, os quais caracterizam as lamproíticas. Esses aspectos, integrados, permitem sugerir que a intrusão estudada possua uma afinidade lamproítica, embora, inibidora a tal aspecto, destaca-se a presença de granadas piropo, incomuns em lamproítos (Mitchell & Bergman, 1991).

    6. Considerações finais
    Embora rochas kimberlíticas sejam conhecidas no país desde a década de 1960, ainda são escassos os estudos a respeito das centenas de intrusões que ocorrem na porção sul do Cráton do São Francisco, em Minas Gerais e imediações. Na realidade, todos os corpos conhecidos até a década de 1990 eram descritos indiscriminadamente como kimberlitos. Depois da descoberta do lamproíto diamantífero de Argyle (Austrália), diversos questionamentos foram levantados e deste modo muitas das intrusões conhecidas foram reinterpretadas como kamafugitos ou mesmo lamproítos.
    No presente estudo, o conjunto de informações apresentado sugere fortemente uma mudança no status da tipologia da intrusão Abel Régis, de kimberlítica para lamproítica. Os dados quanto à morfologia do pipe e seus principais aspectos mineralógicos coadunam com tal hipótese. Embora ocorram diversos afloramentos expostos na superfície, todos eles apresentam-se bastante intemperizados, prejudicando estudos geoquímicos na rocha que poderiam consolidar essa nova interpretação. Nesse sentido, está-se tentando, junto a SAMSUL Mineração, a obtenção de amostras de testemunhos de sondagem, no sentido de se efetuarem as análises pertinentes.
     
  • Kimberlito Canastra-1 (São Roque de Minas, MG): geologia, mineralogia e reservas diamantíferas

    RESUMO
    A pesquisa de fontes diamantíferas primárias no Brasil iniciou-se na década de 1960, culminando com a descoberta da mineralização no kimberlito Canastra-1, que representa a primeira fonte primária com teores economicamente viáveis do país. O kimberlito aflora na região da Serra da Canastra, nas cabeceiras do rio São Francisco. A intrusão é constituída de dois blows alinhados segundo NW-SE, o trend estrutural da região definido em metassedimentos do Grupo Canastra. O blow menor (NW), quase circular e com ±0,8 ha de área, possui teores desprezíveis em diamantes. O outro (SE), com quase 1 ha, é mineralizado a um teor médio de 12-18 ct/100 t de rocha. Variações significativas também são verificadas em relação às fácies petrográficas do kimberlito, homogênea no blow NW, enquanto a SE é heterogênea, ocorrendo a mistura de várias fácies. A curta distância entre os blows (<40 m) pressupõe que ambos se juntem em profundidade, constituindo, então, apófises da mesma intrusão. A química mineral dos indicadores revelou forte semelhança com alguns corpos kimberlíticos africanos diamantíferos. Dados obtidos na lavra experimental indicaram uma qualidade excelente para os diamantes do kimberlito, estimando-se um valor médio em torno de US$ 180-200/ct.
    Palavras-chave: Kimberlito, diamante, pesquisa mineral, Canastra-1.

    ABSTRACT
    The research on the primary diamond sources in Brazil started in the 1960 years and had its highest achievement with the discovery of the mineralized Canastra-1 kimberlite which is the first Brazilian primary deposit having economic contents. This pipe surfaces in the Serra da Canastra (Canastra Range) near the sources of the São Francisco River. The intrusion is made up of two blows lined along NE-SE, which is the region's structural trend defined in the metasedimentary rocks of the Canastra Group. The smaller blow is nearly circular with an area of approximately 0.8 ha and has only negligible diamond content. The SE blow has almost 1.0 ha and is mineralized with an average content of 12 to 18 ct/100 tonnes of rock. There are also significant differences in the petrographic facies of the two bodies, which is homogeneous in the NW blow while the SE blow is heterogeneous, with the occurrence of a mixture of several facies. The short distance between the blows justifies the assumption that they join in depth, therefore being apophyses of the same intrusion. The mineral chemistry of the indicators showed a strong resemblance with some diamondiferous African kimberlites. Data from experimental mining indicated an excellent quality for this kimberlite's diamonds, with US$180-200/ct estimated average value.
    Keywords: Kimberlite, diamond, mineral research, Canastra-1 pipe.



    1. Introdução
    A pesquisa de fontes diamantíferas primárias teve início no país somente a partir do final da década de 1960, com a criação da SOPEMI, pelo ex-órgão estatal francês de mineração, BRGM. Em 1969, foram descobertos os primeiros corpos kimberlíticos em Coromandel (MG) e, depois disso, a SOPEMI, incorporada na década de 1980 ao grupo sul-africano De Beers, descobriu e pesquisou mais de uma centena de corpos na mesma região, nenhum deles, porém, aparentemente tendo revelado importância econômica.
    Na região da serra da Canastra, localizada cerca de 200 km a S-SE de Coromandel, a pesquisa de kimberlitos iniciou-se na mesma época, tendo como alvo principal a zona das cabeceiras do rio São Francisco, onde, desde 1937, são conhecidas diversas ocorrências detríticas nos arredores da cidade de Vargem Bonita. A prospecção aluvionar de minerais indicadores levou logo à descoberta, em 1974, do kimberlito Canastra-1 pelo BRGM. Entretanto, a pesquisa, nessa época, se limitou a um setor (NW) que possuía teores desprezíveis em diamantes. Passaram-se cerca de quinze anos até que uma nova fase de pesquisas voltasse a ser efetuada, agora pela Mineração do Sul - SAMSUL (De Beers). Assim, em 1989, foram escavados seis poços de pesquisa, desde o blow NW até o blow SE, sendo que o último apresentou grande quantidade de microdiamantes.
    A respeito desse último aspecto é interessante ressaltar que, por questões de prioridades da companhia, as amostras referentes aos seis poços somente foram processadas dois anos após suas coletas; assim a mineralização só foi efetivamente reconhecida em 1991. Pesquisa de detalhe foi efetuada no período 1992-98 e, em 2001, foi protocolado, no DNPM, o Relatório de Pesquisa com a definição das reservas diamantíferas do corpo Canastra-1. Esse relatório concluía sobre a viabilidade técnica e econômica para a explotação de diamantes. No ano seguinte, a SAMSUL foi adquirida pelo grupo canadense Black Swan Resources, criando-se, então, a Brazilian Diamonds (BDY), que atualmente tenta, junto aos órgãos nacionais competentes, a liberação das atividades de lavra.
    Durante esse longo período entre prospecção, pesquisa e viabilidade técnica-econômica do depósito, compreensivelmente, todas as informações a respeito foram mantidas em sigilo pelas empresas detentoras dos direitos minerários. Entretanto a atual detentora (SAMSUL-BDY) tem procurado facilitar a atuação de pesquisadores dos departamentos de Geologia e de Engenharia de Minas da UFMG, os quais realizam estudos científicos envolvendo o kimberlito. Esse trabalho visa, assim, à divulgação do estado da arte sobre tais pesquisas, objetivando o estudo da geologia, da mineralogia e dos aspectos econômicos do corpo, bem como discussões e comparações relacionadas a outros corpos intrusivos da região.

    2. Localização e contexto geológico
    O kimberlito Canastra-1 está localizado na parte externa, próxima ao grande escarpamento da serra da Canastra, região do alto rio São Francisco, cerca de 7km a oeste do vilarejo de São José do Barreiro, município de São Roque de Minas. O acesso à área é feito, desde Belo Horizonte, pelas rodovias MG-050 até Pium-í (260 km), daí em direção a Vargem Bonita (57 km) e, depois, por estradas de terra atingindo São José do Barreiro (17,5 km) e, por fim, a intrusão (~12 km) (Figuras 1 e 2). Em termos geológicos, os principais estudos sobre essa região devem-se a Barbosa et al. (1970) e, em termos geotectônicos, a mesma se situa na porção terminal sul da Faixa de Dobramentos Brasília, que circunda a oeste e sudoeste o Cráton do São Francisco (cf. limites de Alkmim et al., 1993).






    Na Figura 3, apresenta-se a geologia simplificada da área onde se deu a intrusão (Heineck et al., 2003). As rochas mais antigas pertencem ao Grupo Pium-í, uma seqüência arqueana do tipo greenstone belt, que é sobreposta pelos grupos Canastra (Mesoproterozóico?) e Araxá (Neoproterozóico?), de idades e relacionamentos ainda duvidosos. No primeiro, predominam quartzitos micáceos e quartzo-micaxistos. Na área da intrusão Canastra-1, ocorrem quartzitos finos, de coloração branca, com intercalações métricas locais de filitos sericíticos do Grupo Canastra. A presença conspícua de mica confere aos quartzitos um aspecto geral placóide, realçado pela erosão diferencial. No Grupo Araxá, os xistos são variados quanto à composição, incluindo (além de quartzo e mica) granada, biotita, hornblenda e feldspato. Os metapelitos do Grupo Bambuí (Neoproterozóico) complementam a sucessão de rochas pré-cambrianas. No extremo oeste da região, aparecem, ainda, seqüências mesozóicas relacionadas à bacia do Paraná. A idade do kimberlito Canastra-1 foi determinada (K/Ar em flogopita) em 120 ±10 Ma (Pereira & Fuck, 2005).
    A faixa de domínio dos grupos Canastra-Araxá é marcada, estruturalmente, por forte tectônica de cavalgamentos com transporte de SW para NE, bem como dobramentos apertados, mostrando vergências para o interior do cráton, justapondo seqüências mais jovens sobre as antigas. As faixas de empurrões possuem direções entre N40º-60ºW, bem assinaladas por drenagens encaixadas e pelas escarpas dadas pelos empurrões. Uma tectônica de cisalhamento transcorrente reativou as antigas zonas de empurrões, imprimindo a estruturação final dessa faixa, complementada por um fraturamento rúptil que gerou três famílias locais de fraturas e juntas subverticais, com direções principais em N20º-35ºE, N100º-115ºE e N20º-35ºW (SAMSUL, 2007).
    Os depósitos diamantíferos que ocorrem na zona do alto São Francisco se inserem, geograficamente, na designada "Região Diamantífera Serra da Canastra" (Penha et al. 2000) ou, em termos metalogenéticos, na "Província Diamantífera da Serra da Canastra" (Chaves, 1999; Benitez & Chaves, 2007). Nesse último trabalho citado, propõe-se uma compartimentação para tal província, de modo que a área em questão integra o "Distrito Diamantífero da Alto São Francisco".

    3. Descrição do corpo
    O kimberlito Canastra-1 intrude rochas do Grupo Canastra segundo o trend regional de fraturamento N60ºW, compreendendo dois blows separados um do outro por cerca de 40 m. O intemperismo atuante só permite estudos de maior detalhe através dos testemunhos de sondagem da época da SOPEMI-De Beers. O blow NW possui uma forma semicircular com área aproximada de 8.000 m² (Figura 4), sendo, em termos texturais, homogêneo e constituído de uma brecha kimberlítica macrocrística. O outro blow (SE) é um pouco maior (10.000 m²) e nele ocorre uma mistura de diversas fácies, destacando-se (i) uma brecha kimberlítica macrocrística de contato, de coloração avermelhada com macrocristais de ilmenita predominantes, (ii) uma brecha kimberlítica macrocrística de coloração verde-escura, com macrocristais de olivina (Figura 5) e (iii) um outro tipo de kimberlito macrocrístico, porém com macrocristais (ilmenita e olivina) de menor tamanho. Na NW, as fácies presentes parecem indicar características abissais à rocha (zona de raiz), enquanto, na SE, ocorre uma mistura de fácies abissais com fácies de zona de diatrema (menos profundas).






    A curta distância entre os blows faz pressupor que ambos se juntem em profundidade, constituindo, então, apófises de um mesmo corpo. A presença de fácies tão distintas e a forma "anormal" do pipe permitem conjecturar que o blow NW seja um braço abortado da intrusão que, no seu conduto principal (o blow SE), teria atingido porções superiores da crosta (cf. esquema da ). Na cava principal aberta neste último para detalhamento de reservas e teores, observaram-se depósitos superficiais sobre praticamente todo o corpo, excluindo um pequeno afloramento na margem direita do córrego Cachoeira. Tal cobertura varia entre 2-4 m de espessura, formada, principalmente, por seixos, blocos e matacões angulosos de quartzitos Canastra deslocados das partes serranas (Figura 7). Logo abaixo, a zona intemperizada da intrusão, com 16-18 m de espessura, constitui um típico yellowground à semelhança da maioria das intrusões kimberlíticas sul-africanas.






    4. Características morfológicas e químicas dos minerais indicadores
    Os principais minerais indicadores de diamantes em campanhas de prospecção são o piropo cromífero [Mg3Al2(SiO4)3], a ilmenita magnesiana [Fe2+TiO3] e o diopsídio [CaMgSi2O6], em ordem decrescente de importância dada pela respectiva diminuição de resistência no transporte aluvionar. Esses três minerais foram coletados a partir de material contido no perfil de transição entre o yellowground e o blueground, que constitui agora o topo do corpo (blow SE) depois da lavra experimental já realizada. Tais minerais foram inicialmente separados em diversas frações granulométricas, tendo em vista obter-se a abundância relativa de cada nas mesmas. Por fim, análises mineraloquímicas preliminares com MEV/EDS foram efetuadas, complementadas com análises por microssonda eletrônica (WDS), visando a comparações desses minerais em outros depósitos do Brasil e do mundo .
    Exames a olho nu indicaram a ocorrência de granadas com três colorações: laranja, vermelha e violeta. Sob lupa binocular, porém, observações sobre um grande número de indivíduos demonstraram que existem todas as variações de matizes entre os tipos vermelhos e os alaranjados, denotando que ambos, provavelmente, constituam um mesmo tipo mineraloquímico. Em geral, as granadas laranjas são de menor tamanho (só elas ocorrem nas frações menores que 1 mm) e parecem representar lascas das bordas de granadas vermelhas onde a concentração de cor é menor. Esses tipos se verificam, ainda, como macrocristais na massa kimberlítica e podem atingir até 2 cm de diâmetro, sendo quase sempre anédricas ou raramente subédricas e, no yellowground, apresentam adiantado estado de alteração por oxidação. O terceiro tipo, ao contrário, está contido quase exclusivamente nas frações menores que 1 mm e apresenta uma coloração característica violeta com matizes púrpuras, designada na literatura como grapefruit (Mitchell, 1986). Além de somente ocorrerem nas frações mais finas, essas granadas aparecem com formas arredondadas (fragmentos de esferas também são comuns), provavelmente constituindo produtos de dissolução de cristais euédricos de forma original hexaoctaédrica.
    Análises obtidas das três citadas variedades demonstraram que, de fato, inexistem diferenças significativas gerais entre piropos vermelhos e alaranjados.  Os conteúdos mais altos em ferro os aproximam da molécula almandina [Fe3Al2(SiO4)3] na série isomórfica, enquanto os teores de cromo são muito baixos (menos que 1% na média de seis amostras), verificando-se nos últimos uma ligeira tendência à depleção nesse elemento. De outro modo, os piropos de cor violeta são típicos Cr-piropos (média de 4,5% em quatro amostras) e os valores superiores em MgO e inferiores em FeO indicam a maior concentração da molécula piropo na série citada. Análises com grande número de indivíduos estão ainda sendo realizadas, visando a situar com precisão o posicionamento desses piropos no esquema classificatório de Dawson e Stephens (1975), noqual as granadas são quimicamente identificadas de G-1 a G-12, bem como suas importâncias em relação à prospecção diamantífera são acentuadas. Os dados ora disponíveis indicam que as granadas estudadas situam-se nos campos G-1 e G-9, respectivamente.
    A ilmenita ocorre sempre em formas mal cristalizadas, desde megacristais com cerca de 3 cm de diâmetro até grãos submilimétricos, sendo largamente o mineral indicador mais comum no kimberlito. Muitas vezes esse mineral se mostra encapado por uma crosta verde heterogênea, resultado de sua alteração para leucoxênio ou perovskita (Mitchell, 1986). Em termos químicos (Tabela 2), o mineral pode ser considerado como uma ilmenita magnesiana e, embora seja relativamente depletado em MgO (média de 10%) em relação a diversos kimberlitos diamantíferos sul-africanos, onde pode alcançar valores próximos de 20% (Mitchell, 1986), ele se assemelha aos minerais de outras localidades de Minas Gerais como o kimberlito Vargem e o conglomerado tufáceo de Romaria (Svisero et al., 1977; Svisero & Meyer, 1981). Entretanto os dados de Cr2O3 são inferiores aos desses dois últimos locais, onde alcançam até mais que 2%, e bem mais próximos dos kimberlitos africanos, onde tais valores em geral também não alcançam 1%.
    O diopsídio, de cor verde-oliva típica, se apresenta em macrocristais prismáticos de até 1 cm de comprimento, embora mais comumente apareça na fração inferior a 1 mm. Em relação ao kimberlito Vargem, as análises revelaram (Tabela 2) valores relativamente superiores de magnésio e cálcio. Entretanto a principal característica química do mineral é a depleção em cromo (média de 0,4% em quatro amostras), que pode alcançar mais que 2% naquele corpo kimberlítico (Svisero et al., 1977). Interessante observar que valores baixos em Cr2O3 são também encontrados em diopsídios inclusos em diamantes brasileiros (Svisero, 1983), bem como em diversos outros kimberlitos mundiais (Mitchel, 1986).

    5. Aspectos econômicos
    A descoberta da mineralização em 1991 foi revelada pela pesquisa de seis poços nas margens do córrego Cachoeira. Cinco destes caíram sobre ou nas proximidades do blow NW, do lado esquerdo do córrego, e de um total de 63 m³ de rocha foram extraídos somente 0,012 ct de microdiamantes. No sexto poço, maior e situado do lado direito do córrego, foram escavados 62 m³ de rocha e recuperados 765 pedras, entre micro e macrodiamantes, perfazendo 19,079 ct (SAMSUL, 2007). A avaliação das reservas totais em diamante do kimberlito Canastra-1 apoiou-se em dados dos trabalhos de pesquisa, principalmente sondagem rotativa diamantada e amostragem de grande volume (quando pedras de até 20 ct foram recuperadas), bem como modelamento geológico. Na pesquisa detalhada de um depósito desse tipo, como a distribuição dos diamantes é aleatória, a confiabilidade dos resultados será função do volume de rocha amostrada.
    Na planta de lavra experimental instalada para processar grande volume do corpo mineralizado, implementada pela SAMSUL, cerca de 15.000 m³ de rocha foram tratados para a obtenção da parte principal das reservas em diamantes, que totalizaram entre as cotas 960-820 m, quase 2.300.000 t de rocha a um teor médio de 16 ct/100 t, estimando-se em 260.000 ct contidos (SAMSUL, 2007). Outro fator fundamental na avaliação econômica de um depósito diamantífero é a quantificação do seu valor médio (dado em US$/ct). Nesse sentido, o diamante da Província da Serra da Canastra é considerado como um dos mais valorizados do Brasil, atingindo cifras da ordem de US$180-200/ct (L. Giglio, 2007, inf. verbal). A qualificação comercial aproximada varia em torno de 80% de cristais gemológicos e 20% chips e industriais (Benitez & Chaves, 2007). São típicas as pedras de forma octaédrica, de elevados graus de pureza e cores altamente gemológicas (D até I), conhecidas no mercado como diamantes "tipo-Canastra".

    6. Considerações finais
    A constatação de reservas economicamente mineráveis de diamantes no kimberlito Canastra-1, em Minas Gerais, representa um novo marco histórico na geologia econômica do país. Sem dúvida, caem por terra as hipóteses que consideram que os kimberlitos da porção sudoeste do Estado seriam praticamente estéreis (eg., Tompkins & Gonzaga, 1989), ou de que a totalidade desses poderia estar erodida até níveis críticos de mineralização, onde a parte econômica dos corpos teria sido distribuída para depósitos aluvionares, antigos ou recentes (eg., Chaves, 1991).
    O mesmo fato abre ainda novas perspectivas à prospecção de outros corpos na região, bem como pesquisas adicionais em corpos já conhecidos. As novas tecnologias introduzidas nos últimos 20 anos, desde a descoberta do pipe lamproítico de Argyle (Austrália), que mudaram o panorama econômico do diamante no mundo, com esse país tornando-se seu maior produtor, exemplificam tal situação. A explotação do kimberlito Canastra-1 deve também possibilitar e incentivar a pesquisa científica em relação ao manto superior sob o Brasil, praticamente desconhecido e de grande importância para o entendimento da evolução do planeta.

    7. Agradecimentos
    Os autores expressam seus agradecimentos à SAMSUL Mineração, em especial aos seus diretores Stephen Fabian e Érico Ribeiro, pela permissão e incentivo ao estudo, e aos geólogos Cristina Pletschette e Jefferson Miranda pelo acompanhamento de campo

    Grupo deve acompanhar pesquisas sobre jazidas de diamantes, no AM

    Grupo deve acompanhar pesquisas sobre jazidas de diamantes, no AM

    Segundo titular da SEMGRH, Sul do Estado possui geodiversidade rica.
    Rocha que contém diamante em Rondônia deve se estender ao Amazonas.


    Técnicos concluíram pela viabilidade econômica e social da exploração do calcário da mina do Jatapu, no município de Urucará (Foto: Divulgação/SEMGRH) Grupo irá auxiliar na localizada de kimberlitos, rocha
    que contém diamante na forma primária
    (Foto: Divulgação/SEMGRH)
    A Secretaria de Mineração, Geodiversidade e Recursos Hídricos (SEMGRH), deverá criar um grupo de trabalho para acompanhar as ações que estão sendo desenvolvidas pelo Serviço Geológico do Brasil (CPRM) na localização de kimberlitos, rocha que contém diamantes na forma primária, no Estado.
    A primeira reunião entre a secretaria e o CPRM, para tratar sobre a formação do GT que irá acompanhar pesquisas sobre a existência de jazidas de diamantes no Estado . O Grupo de Trabalho também terá a participação do Departamento Nacional de Produção Mineral (DNPM).
    Segundo o titular da SEMGRG, Daniel Nava, a região Sul do Amazonas possui uma geodiversidade muito rica, e a secretaria dispõe de especialistas em diamantes que poderão contribuir com os estudos que estão sendo realizados pelo CPRM. "A SEMGRH já trabalha em parceria com o Serviço Geológico do Brasil no levantamento de novas oportunidades de negócios do setor mineral, seja na produção de minerais metálicos na região Nordeste do Amazonas, na produção de insumos agrominerais na região do Rio Madeira e Baixo Amazonas, e em commodities minerais de grande valor agregado como o ouro e diamantes, principalmente na região Sul do Amazonas", afirmou.
    Ainda de acordo com Daniel Nava, provavelmente os kimberlitos existentes em Rondônia deverão se estender até o Amazonas, mas somente com o mapeamento geológico em detalhe será possível definir a localização das jazidas economicamente viáveis.