Estrutura eletrônica de compostos de urânio é desvendada
Os actinídeos são um grupo de 15 elementos radioativos que fazem parte da sétima linha da tabela periódica. Isto quer dizer que seus átomos possuem elétrons em todos os sete níveis de energia possíveis. Em ordem crescente de número atômico, começam com o actínio (89 prótons e 89 elétrons) e vão até o laurêncio (103 prótons e 103 elétrons). Urânio (92) e tório (90) são os actinídeos mais abundantes na crosta terrestre.
De modo geral, todas as propriedades macroscópicas dos materiais – e, por decorrência, suas aplicações tecnológicas – dependem da distribuição dos elétrons nas camadas mais externas dos átomos. É isso que define se o material é maleável ou rígido, se conduz muito ou pouco a corrente elétrica ou se responde fortemente ou fracamente ao campo magnético. Os orbitais mais externos podem também se combinar, formando orbitais híbridos, com diferentes formas e níveis de energia. Com isso, a hibridação de orbitais modifica as propriedades dos átomos, o modo como se ligam a outros átomos e até mesmo as estruturas das moléculas formadas.
Orbitais estudados com raios X
Agora, Ricardo dos Reis e uma equipe de pesquisadores brasileiros e do exterior usaram o Laboratório Nacional de Luz Síncrotron (LNLS), em Campinas (SP) para realizar um estudo experimental e teórico que investigou a configuração dos orbitais mais externos e de seu híbrido em compostos de urânio, trazendo conhecimentos inéditos sobre os actinídeos. A dificuldade em manipular esses materiais de forma segura havia feito com que suas propriedades permanecessem relativamente desconhecidas em comparação com as dos elementos mais leves. O novo estudo altera tal situação.
“Por serem elementos pesados, com muitos elétrons, os actinídeos apresentam uma distribuição peculiar de energia em seus últimos orbitais, dos níveis 5f e 6d. Nossa principal contribuição foi estabelecer as técnicas experimentais para poder sondar esses níveis exteriores. Conseguimos observar, de forma seletiva, as propriedades das camadas 5f e 6d e da hibridização delas. Isso não era possível antes. A maior parte das propriedades macroscópicas desses materiais se deve à interação entre os níveis 5f e 6d”, disse o professor Narcizo Marques Neto.
O grupo utilizou a técnica de dicroísmo circular magnético de raios X – XMCD, na sigla em inglês (X-ray magnetic circular dichroism) -, com raios X de energia relativamente alta – no patamar de 17 keV – para investigar os orbitais 5f, 6d e sua hibridização nos compostos de urânio. A expressão “dicroísmo circular magnético de raios X” refere-se às diferenças apresentadas por dois espectros de absorção de raios X em um campo magnético, um com luz polarizada à esquerda, o outro com luz polarizada à direita. Analisando essas diferenças podem-se obter muitas informações acerca das propriedades do átomo.
Supercondutores em temperatura ambiente
O grupo trabalhou com dois compostos silicatos: urânio-manganês e urânio-cobre. A ideia previamente existente, no caso do urânio-manganês, era a de que todo o magnetismo do composto se devia ao manganês; e, no caso do urânio-cobre, ao urânio. Os pesquisadores observaram que o urânio-manganês apresenta também, em temperatura ambiente, um certo magnetismo no urânio, induzido pelo manganês. E que, em baixas temperaturas, além do magnetismo induzido, a rede do urânio se ordena independentemente, apresentando, por isso, um magnetismo ainda mais forte.
No caso do urânio-cobre, o grupo descobriu que o cobre também apresenta um magnetismo induzido pelo urânio. Estes foram conhecimentos novos aportados pelo estudo. ”Além do comportamento de conjunto do urânio, observamos também o que acontece em suas camadas e subcamadas, no caso a 5f, a 6d e a híbrida, em baixa e altas temperaturas. E explicamos por que acontece”, ressaltou Narcizo.
Existem compostos de urânio que são alguns dos poucos exemplos de materiais supercondutores não convencionais, que combinam duas propriedades antagônicas: o ferromagnetismo e a supercondutividade. Até hoje, a supercondutividade, isto é, a propriedade que certos materiais apresentam de conduzir corrente elétrica sem resistência nem perdas, só foi alcançada com o resfriamento desses materiais a temperaturas extremamente baixas.
Entender a fundo esses compostos de urânio não convencionais pode ser um passo fundamental para se chegar a um material supercondutor em temperatura ambiente. Se obtido, tal material terá um impacto tecnológico e social extraordinário. “Embora nossa pesquisa tenha se dado no âmbito estrito da ciência básica, desdobramentos tecnológicos tão interessantes como este não estão fora de seu horizonte”, disse Narcizo.
Fonte: Inovação Tecnólogica
Nenhum comentário:
Postar um comentário